Делаем мигающий светодиод своими руками: простейшие и сложные схемы

Мигающие светодиоды часто применяют в различных сигнальных цепях. В продаже довольно давно появились светодиоды (LED) различных цветов, которые при подключении к источнику питания периодически мигают. Для их мигания не нужны никакие дополнительные детали. Внутри такого светодиода смонтирована миниатюрная интегральная микросхема, управляющая его работой. Однако для начинающего радиолюбителя намного интереснее сделать мигающий светодиод своими руками, а заодно изучить принцип работы электронной схемы, в частности мигалок, освоить навыки работы с паяльником.

[contents]

Тестирование мигающих RGB светодиодов

Компьютерный блок питания является едва ли не идеальным вариантом для тестирования светодиодов SMD0603. В этом случае нужно просто поставить резистивный делитель.
Для этого согласно схеме из технической документации оценивают сопротивления p-n переходов в прямом направлении при помощи тестера.

Прямое измерение здесь невозможно. Вместо этого следует собрать схему, показанную на рисунке. Вот из каких соображений мы исходили, и что изображено на картинке:

  • Микросхема дана вместе с номерами ножек согласно техническим данным.
  • Питание подаётся на катод, потому что полярность напряжения отрицательная. 3,3 В как раз хватит, чтобы открыть p-n переходы.
  • Переменный резистор нужен не очень большого номинала.

У нас на рисунке установлен с максимальным пределом 680 Ом. Именно в таком положении он должен находиться изначально.

Обычно сопротивление открытого p-n перехода не очень велико, но нам нужен значительный запас, чтобы диоды не погорели (мы помним, что их максимальное прямое напряжение составляет 3 В).

Также принимается во внимание тот факт, что при низком вольтаже сопротивление каждого светодиода составит порядка 700 Ом. При параллельном включении суммарное сопротивление находится по формуле, показанной на рисунке ниже

Подставляя туда в качестве всех трех входных параметров 700, получаем 233 Ом. Это будет сопротивление наших светодиодов в тот момент, когда они только-только начнут открываться (по крайней мере, мы так полагаем).

Суть в том, что нам понадобится контролировать режим тестером (см. рисунок выше).

Для этого постоянно измеряем напряжение на светодиодной микросхеме, одновременно уменьшая значение сопротивления, пока разница потенциалов не поднимется до 2,5 В. Дальше повышать вольтаж попросту опасно, быть может, многие остановятся даже на 2,2 В.

Затем из пропорции найдём искомое сопротивление светодиодной микросхемы: (3,3 – 2,5)/2,5 = R пер / Rобщ, где R пер – сопротивление переменного резистора в тот момент, когда напряжение на дисплее тестера достигает 2,5 В. R общ = 3,125 R пер.


Провод +3,3 В на блоке питания компьютера имеет оранжевую изоляцию, а схемную землю берём с чёрного.

Обратите внимание, что не нужно включать этот модуль без нагрузки. Идеально было бы на один из разъёмов подключить DVD-привод или какое-нибудь другое устройство

Допускается также просто снять боковую крышку и извлечь оттуда нужные контакты.

Подключение светодиодов иллюстрирует схема. Многие спросят – а что дальше? Измерили сопротивление на параллельное подключение светодиодов и остановились?

Поясняем: в рабочем состоянии, если светодиодов понадобится включить несколько, мы проделаем аналогичную настройку. В результате напряжение питания на микросхеме должно составить 2,5 В.

Обратите внимание, что светодиоды мигающие, поэтому показания могут быть не совсем точными

В этом случае максимальное из показаний не должно превысить 2,5 В. Ну, и, конечно, будет видно, что схема работает, потому что светодиоды начнут мигать.

Чтобы только часть из них проявляла себя в этом плане, нужно убрать питание с ненужных. Допускается также собрать отладочную схему с тремя переменными резисторами – по одному в ветвь каждого цвета.

Таким образом, мы теперь знаем, как сделать мигающую светодиодную подсветку своими руками.

А теперь многие спросят, можно ли варьировать время срабатывания.

Полагаем, что внутри все равно должны использоваться ёмкости. Быть может, это даже собственные ёмкости p-n переходов светодиодов.

Но в любом случае, подключая переменный конденсатор параллельно схеме на вход, можно попробовать что-либо изменить.

Номинал должен быть очень малым и измеряться в пФ. В такой маленькой микросхеме попросту не может быть больших ёмкостей.

Мы допускаем также, что резистор, подключённый параллельно микросхеме (см. пунктир на схеме выше) и усаженный на землю, будет образовывать более точный делитель. В этом случае стабильность возрастёт.

Тогда номиналы нужно брать более весомые, но не забывать, что это значительно ограничит ток, идущий через светодиоды. Фактически нужно продумать этот вопрос согласно имеющейся ситуации.

Принимаем сверхдлинные волны на телефон дендрофекальным методом

Привет. Не так давно я создавал на пикабу пост, где просил совета по схеме усилителя для СДВ. Если кому интересно, вот этот. Ну, как обычно, я получил кучу разнообразных рекомендаций начиная от «у тебя ниче не выйдет, займись чем-нибудь другим» и заканчивая советами купить sdr-свисток и не городить огород. То-есть собственно по теме ничего толком и не посоветовали.

Ну и ладно, я в общем-то, был бы удивлен, если бы по заданному вопросу кто-то конкретно ответил, так что решил все делать сам.

Перво-наперво, руководствуясь своими скудными познаниями, и расширяя их по ходу, если это можно так назвать, проектирования, я накропал схему на операционном усилителе, вот такую:

Схема полностью соответствует самым строгим требованиям паттерна проектирования под названием «Я его слепила из того, что было». Ни одной детали для этого устройства я не купил, все было выпаяно из каких-то старых принтеров, магнитол, блоков питания и прочего, что валялось в углу комнаты. Этим объясняется выбор операционного усилителя, который я изначально хотел все-таки купить какой-нибудь более подходящий, но в итоге прилепил, то, что нашел, так как, если честно, я не сильно верил, что этот франкенштейн будет работать. Номиналы (и большинство, так сказать, схемотехнических решений) подбирались по принципу «в LTSpice вроде бы работает».

Теперь самое время рассказать, что же тут такое, по моему мнению, по крайней мере, происходит.

Перво-наперво я попытался определить характеристики микрофонного входа мобилы, и путем замеров мультиметром выяснил, что на сигнальном входе без нагрузки мобила держит 2.5 В, а если нагрузить его резистором, то напряжение просаживается примерно как если бы там был 2.3 кОм резистор (R4). Так же там должен быть еще конденсатор, но поскольку я совершенно не представляю себе, как измерить его параметры, я решил просто забить на его существование. Я не стал заморачиваться и фильтром нижних частот на выходе, так как решил, что он все равно имеется в схеме самой мобилы.

Вот и весь девайс. Кстати, в используемой микросхеме 2 ОУ, и я решил не использовать второй, и, не зная, что с ним делать, я решил просто закоротить все его 3 вывода, надеясь, что это снизит помехи.

Ну а теперь время фоточек.

Вот это антенна. На фоне всего остального она даже неплохо выглядит. Я даже полирнул деревяшки шкурочкой, чтобы занозы не сажать.

А вот вам пример спектров, который можно увидеть с этой приблудой:

А еще меня есть несколько записей сигналов, и я могу рассказать о том, что же тут за сигналы, но я думаю, что это можно оставить на потом, если кому-то это будет интересно. Собственно, если этот пост хотя бы несколько десятков плюсов наберет, то я тогда сделаю пост об этом.

Источник

Как сделать светодиодную мигалку своими руками

Существует множество схем, с помощью которых можно заставить мигать светодиод. Мигающие устройства можно изготовить как из отдельных радиодеталей, так и на основе различных микросхем. Сначала мы рассмотрим схему мигалки мультивибратора на двух транзисторах. Для ее сборки подойдут самые ходовые детали. Их можно приобрести в магазине радиодеталей или «добыть» из отживших свой срок телевизоров, радиоприемников и другой радиоаппаратуры. Также во многих интернет магазинах можно купить наборы деталей для сборки подобных схем led мигалок.

На рисунке изображена схема мигалки мультивибратора, состоящая всего из девяти деталей. Для ее сборки потребуются:

  • два резистора по 6.8 – 15 кОм;
  • два резистора имеющие сопротивление 470 – 680 Ом;
  • два маломощных транзистора имеющие структуру n-p-n, например КТ315 Б;
  • два электролитических конденсатора емкостью 47 –100 мкФ
  • один маломощный светодиод любого цвета, например красный.

Не обязательно, чтобы парные детали, например резисторы R2 и R3, имели одинаковую величину. Небольшой разброс номиналов практически не сказывается на работе мультивибратора. Также данная схема мигалки на светодиодах не критична к напряжению питания. Она уверенно работает в диапазоне напряжений от 3 до 12 вольт.

Схема мигалки мультивибратора работает следующим образом. В момент подачи на схему питания, всегда один из транзисторов окажется открытым чуть больше чем другой. Причиной может служить, например, чуть больший коэффициент передачи тока. Пусть первоначально больше открылся транзистор Т2. Тогда через его базу и резистор R1 потечет ток заряда конденсатора С1. Транзистор Т2 будет находиться в открытом состоянии и через R4 будет протекать его ток коллектора. На плюсовой обкладке конденсатора С2, присоединенной к коллектору Т2, будет низкое напряжение и он заряжаться не будет. По мере заряда С1 базовый ток Т2 будет уменьшаться, а напряжение на коллекторе расти. В какой-то момент это напряжение станет таким, что потечет ток заряда конденсатора C2 и транзистор Т3 начнет открываться. С1 начнет разряжаться через транзистор Т3 и резистор R2. Падение напряжения на R2 надежно закроет Т2. В это время через открытый транзистор Т3 и резистор R1 будет течь ток и светодиод LED1 будет светиться. В дальнейшем циклы заряда-разряда конденсаторов будут повторяться попеременно.

Если посмотреть осциллограммы на коллекторах транзисторов, то они будут иметь вид прямоугольных импульсов.

Когда ширина (длительность) прямоугольных импульсов равна расстоянию между ними, тогда говорят, что сигнал имеет форму меандра. Снимая осциллограммы с коллекторов обоих транзисторов одновременно, можно заметить, что они всегда находятся в противофазе. Длительность импульсов и время между их повторениями напрямую зависят от произведений R2C2 и R3C1. Меняя соотношение произведений можно изменять длительность и частоту вспышек светодиода.

Для сборки схемы мигающего светодиода понадобятся паяльник, припой и флюс. В качестве флюса можно использовать канифоль или жидкий флюс для пайки, продающийся в магазинах. Перед сборкой конструкции необходимо тщательно зачистить и залудить выводы радиодеталей. Выводы транзисторов и светодиода нужно соединять в соответствии с их назначением. Также необходимо соблюдать полярность включения электролитических конденсаторов. Маркировка и назначение выводов транзисторов КТ315 показаны на фото.

Проще всего определить катод светодиода, рассматривая прибор на просвет. Катодом является электрод с большей площадью. Минусовой вывод «электролита» обычно помечен белой полосой на корпусе прибора.

В зависимости от задач, которые ставит перед собой радиолюбитель, схему мигалки можно собрать «навесу», соединяя выводы радиодеталей между собой с помощью отрезков тонкого провода. В этом случае может получиться конструкция наподобие той, что показана ниже на фото.

Собираем мигалку «на коленке»

Если нужно собрать мигалку для последующего применения, то монтаж можно выполнить на куске жесткого картона или изготовить печатную плату из текстолита.

Автомобильный спецсигнал своими руками.

Любому автомобилисту известно, что использование устройств спец. назначения (например – спецсигналы типа СГУ, стробоскопы и т.п.) является незаконным и при остановке органами полиции можете быть оштрафованы на кругленькую сумму, плюс конфискация запрещенных приборов. Поэтому статья подготовлена для ознакомительных целей – обратите внимание на этот факт.
Итак, чем отличается стробоскоп от мигалки? по идее ничем, только типом мигания светоизлучающих диодов (ну или лампочек). Мигалку можно собрать за 5 минут с применением обычного мультивибратора, но это будет простой мигалкой, а не стробоскопом, которые устанавливаются на машины гос. служб. Но к сведению зрителя – стробоскоп это просто устройство, которые вырабатывает яркие световые вспышки, так,что простую мигалку тоже можно назвать стробоскопом.

Как же собрать стробоскоп, принцип работы которого схож с мигалками, которые на полицейских машинах? Простым мультивибратором тут не обойтись, хотя наша конструкция по уровню сложности не сильно отличается от обычного мультивибратора.

Нам для начала нужен одноканальный генератор импульсов, он может быть любым, можно на базе мультивибратора или что еще проще – на основе легендарного таймера 555

Таймер подключается как низкочастотный генератор прямоугольных импульсов, частоту этих импульсов можно будет регулировать переменным резистором.

Выходные импульсы с микросхемы поступают на вход счетчика делителя. А затем начинается процесс “считывания”. Выходы счетчика переключаются поочередно, когда один из выходов открыт, все остальные закрыты. Схема устройства.

Выходы микросхемы счетчика согласованы диодами. Три выхода подключены как один, делано это для того, чтобы получить тройную последовательность вспышек для каждого светодиода. Поскольку планируется подключение мощных светодиодов, выход был усилен дополнительным транзистором (в случае каждого выходе).

Таким образом, мы можем подключить даже довольно мощные нагрузки, к примеру лампы накаливания (12 Вольт), но с учетом того, что основная мощность будет рассеиваться на транзисторах и последние будут перегреваться и довольно сильно, поэтому подобрать транзисторы с током 10 и более Ампер и установить их на теплоотвод.

Диоды самые обычные – 1n4148 маломощные кремниевые выпрямительные диоды. Работает схема просто – таймер вырабатывает низкочастотные импульсы, которые поступают на вход счетчика. Каждый импульс будет последовательно открывать и закрывать выводы с счетчика, таким образом получаются мигания, а диодная развязка сделана для того, чтобы получить несколько миганий одного светодиода. К примеру – один из светодиодов будет мигать три раза, затем тухнет, затем тоже самое происходит со вторым.

Вторая схема работает точно по такому же принципу, только тут светодиоды подключены ко всем выходам микросхемы. Таким образом у нас получается эффект бегущей строки.

Светодиоды самые обычные (только не сборка), но при желании можно управлять нагрузками большой мощности, добавив выходные транзисторы в качестве усиливающего элемента, точно так, как это сделано в первой конструкции, ниже приведена схема бегущей строки.

Печатная плата для первой схемы доступна для скачивания здесь. Удачи!

Источник

Простые схемы мигалок на основе мигающих светодиодов для сборки своими руками

Открывать полный загадок мир радиоэлектроники, не имея специализированного образования, рекомендуется начинать со сборки простых электронных схем. Уровень удовлетворения при этом будет выше, если положительный результат будет сопровождаться приятным визуальным эффектом. Идеальным вариантом являются схемы с одним или двумя мигающими светодиодами в нагрузке. Ниже приведена информация, которая поможет в реализации наиболее простых схем, сделанных своими руками.

Готовые мигающие светодиоды и схемы с их использованием

Среди многообразия готовых мигающих светодиодов, наиболее распространены изделия в 5-ти мм корпусе. Помимо готовых одноцветных мигающих светодиодов, существуют двухвыводные экземпляры с двумя или тремя кристаллами разного цвета. У них в одном корпусе с кристаллами встроен генератор, который работает на определенной частоте. Он выдает одиночные чередующиеся импульсы на каждый кристалл по заданной программе.

Скорость мерцания (частота) зависит от заданной программы. При одновременном свечении двух кристаллов мигающий светодиод выдает промежуточный цвет. Вторыми по популярности являются мигающие светоизлучающие диоды, управляемые током (уровнем потенциала). То есть, чтобы заставить мигать светодиод данного типа нужно менять питание на соответствующих выводах.

Например, цвет излучения двуцветного красно-зелёного светодиода с двумя выводами зависит от направления протекания тока.

Смастерить мигалку на основе готового мигающего светодиода достаточно легко. Для этого потребуется батарейка CR2032 или CR2025 и резистор на 150–240 Ом, который следует припаять на любой вывод. Соблюдая полярность светодиода, контакты подключаются к батарейке. Светодиодная мигалка готова, можно наслаждаться визуальным эффектом. Если использовать батарейку типа «крона», основываясь на законе Ома, следует подобрать резистор большего сопротивления.

Обычные светодиоды и семы мигалок на их основе

Начинающий радиолюбитель может собрать мигалку и на простом одноцветном светоизлучающем диоде, имея минимальный набор радиоэлементов. Для этого рассмотрим несколько практических схем, отличающихся минимальным набором используемых радиодеталей, простотой, долговечностью и надежностью.

Первая схема состоит из маломощного транзистора Q1 (КТ315, КТ3102 или аналогичный импортный аналог), полярного конденсатора C1 на 16В с емкостью 470 мкФ, резистора R1 на 820-1000 Ом и светодиода L1 наподобие АЛ307. Питается вся схема от источника напряжения 12В.

Приведенная схема работает по принципу лавинного пробоя, поэтому база транзистора остаётся «висеть в воздухе», а на эмиттер подаётся положительный потенциал. При включении происходит заряд конденсатора, примерно до 10В, после чего транзистор на мгновение открывается с отдачей накопленной энергии в нагрузку, что проявляется в виде мигания светодиода. Недостаток схемы заключается в необходимости наличия источника напряжения 12В.

Вторая схема собрана по принципу транзисторного мультивибратора и считается более надёжной. Для её реализации потребуется:

  • два транзистора КТ3102 (или их аналога);
  • два полярных конденсатора на 16В емкостью 10 мкФ;
  • два резистора (R1 и R4) по 300 Ом для ограничения тока нагрузки;
  • два резистора (R2 и R3) по 27 кОм для задания тока базы транзистора;
  • два светодиода любого цвета.

Простая мигалка на светодиоде

Существуют более простые схемы мигалок на светодиоде. Одна из таких показана на следующем фото.


Схема самой простой мигалки

Если внимательно присмотреться к этой светодиодной мигалке, то можно увидеть, что транзистор в схеме мигалки включен «неправильно». Во-первых, неправильно подключены эмиттер и коллектор. Во-вторых, база «висит в воздухе». Однако схема светодиодной мигалки вполне рабочая. Дело в том, что в ней КТ315 работает как динистор. При достижении на нем порогового значения обратного напряжения происходит пробой полупроводниковых структур и транзистор открывается. Нарастание напряжения на транзисторе происходит по мере зарядки конденсатора. После открывания транзистора конденсатор разряжается на светодиод. Так как в схеме мигалки на светодиодах используется нестандартное включение транзистора, она может потребовать подбора резистора или конденсатора при наладке.

После того, как сделаете своими руками простую мигалку, можете переходить к более сложным мигающим устройствам, например к созданию цветомузыки на светодиодах.

Расчёт ограничительного резистора

Взглянув на вольт-амперную характеристику светодиода, становится понятно: насколько важно не ошибиться при расчёте ограничительного резистора

  • U – напряжение питания, В;
  • ULED – прямое падение напряжения на светодиоде (паспортное значение), В;
  • I – номинальный ток (паспортное значение), А.

Полученный результат следует округлить до ближайшего номинала из ряда Е24 в большую сторону, а затем рассчитать мощность, которую должен будет рассеивать резистор:

R – сопротивление резистора, принятого к установке, Ом.

Более подробную информацию о расчётах с практическими примерами можно получить в статье о расчете резистора для светодиода. А тот, кто не желает погружаться в нюансы, может быстро рассчитать параметры резистора с помощью онлайн-калькулятора.

Необходимые материалы и радиодетали

Чтобы собрать светодиодную мигалку своими руками, работающую от источника питания с напряжением 12 В, понадобится следующее:

  • паяльник;
  • канифоль;
  • припой;
  • резистор на 1 кОм;
  • конденсатор емкостью 470-1000 мкФ на 16 В;
  • транзистор КТ315 или его более современный аналог;
  • классический светодиод;
  • простой провод;
  • источник питания на 12 В;
  • спичечный коробок (необязательно).

Последний компонент выступает в роли корпуса, хотя собрать схему можно и без него. В качестве альтернативы можно использовать монтажную плату. Навесной монтаж, описанный далее, рекомендуется для начинающих радиолюбителей. Такой способ сборки позволяет быстрее сориентироваться в схеме и сделать все правильно с первого раза.

Готовые мигающие светодиоды

Мигающие светодиоды от различных производителей по сути представляют собой функционально завершенные, готовые к применению в различных областях схемы. По внешним параметрам они мало чем отличаются от стандартных лед-устройств. Однако в их конструкцию внедрена схема генераторного типа и сопутствующих ему элементов.

Среди главных преимуществ готовых мигающих светодиодов выделяются:

  1. Компактность, прочность корпуса, все компоненты в одном корпусе.
  2. Большой диапазон напряжения питающего тока.
  3. Многоцветное исполнение, широкое разнообразие ритмов переключения оттенков.
  4. Экономичность.

Схемы использования

Самый простой вариант схемы, выпускаемых сегодня мигалок на базе светодиодов, изготовление которых возможно своими силами радиолюбителям, включает:

  1. Транзистор малой мощности.
  2. Конденсатор полярного типа на 16 вольт и 470 микрофарад.
  3. Резистор.
  4. Лед-элемент.

При накоплении заряда осуществляется лавинообразный его пробой с открытием транзисторного модуля и свечением диода. Устройство такого типа часто используется в елочной гирлянде. Недостатком схемы является необходимость применения особого источника питания.

Как сделать гирлянду из светодиодов

Для изготовления гирлянды, периодически мигающей с заданным ритмом, потребуются следующие компоненты и набор инструмента:

  1. Светодиоды на 20 мАч.
  2. Проводка площадью сечения 0,5-0,25 мм2.
  3. Трансформатор на 6 вольт.
  4. Резистор на 100 Ом.
  5. Паяльная станция с наконечником небольшого сечения, припой, канифоль.
  6. Нож с острым лезвием.
  7. Герметик на силиконовой основе.
  8. Фломастер.

Алгоритм сборки:

  1. Определиться точно с промежутками между мигающими элементами.
  2. Подготовить провод и обозначить фломастером отметины под светодиоды.
  3. На местах отметок сделать срезы изоляции острым ножом.
  4. Далее на оголенные участки нанести канифоль с припоем.
  5. Припаять электроды диодов к этим местам.
  6. Нанести силиконовый герметик на оголенные участки для обеспечения электроизоляции.

По завершении подсоединяется блок питания и обычный резистор. Устройство включается в сеть и проверяется на работоспособность.

Совет! При изготовлении гирлянд нужно учитывать, что исключительно последовательный характер соединения светодиодов в цепи будет обеспечивать свойственный им мигающий эффект.

Самостоятельное изготовление мигающего светодиода

Множество устройств дополняются мигающими светодиодами, обеспечивая подачу необходимых сигналов или простую подсветку.

Особенности светодиодов

Прежде чем сделать оригинальный мигающий светодиод, необходимо узнать некоторые моменты относительно этих устройств.

Излучаемый свет зависит от ряда показателей; Коэффициент полезного действия может быть разным. Причем самые слабые — синие; Как для полупроводниковых элементов, КПД у светодиодов (СД) достаточно мал. В большинстве случаев он не превышает 45 процентов; Одновременно с низким КПД, светодиоды отличаются превосходной эффективностью превращения в световую энергию электричества; На каждый Вт электроэнергии приходится количество фотонов, примерно в 6-7 раз превышающих показатели спирали накаливания при аналогичных потребительских условиях; Такие возможности светодиодов объясняют популярность создания мигающих ламп на основе СД; Светодиодам требуется достаточно маленькое напряжение, чтобы схема оказалась рабочей; Чтобы добиться эффекта мигания, следует соответствующим образом подобрать пассивные и ключевые элементы

Тогда схема сможет выдавать мигание требуемой формы — скважность, частота следования или амплитуда.

Для создания своими руками мигающего устройства можно воспользоваться платформой Ардуино. Ардуино — это аппаратная вычислительная платформа. Что самое интересно, Ардуино предназначена для аматорского использования, позволяет создавать всевозможные схемы.

Питающие напряжения для светодиодов

Чтобы создать красный, синий, желтый или любой другой светодиод или полноценную светодиодную ленту, сделать это путем подключения к сети на 220 Вольт — не самое лучшее решение.

На практике подобные схемы через питание на 220 Вольт существуют, но самостоятельно добиться эффекта мигания крайне сложно.

Для экономии на платежах за электроэнергию наши читатели советуют «Экономитель энергии Electricity Saving Box». Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

загрузка…

Куда правильнее, когда схема использует более подходящее питающее напряжение.

  1. 5 Вольт. Такое напряжение вы можете встретить в зарядных устройствах для телефонов, во многих современных гаджетах. Величина выходного тока здесь небольшая, но обычно таковая и не требуется. Дополнительно 5 Вольт можно отыскать на шинах блока питания компьютера. В этой ситуации вы не будете ограничены по току. Питающий провод будет красный, а заземление — черный.
  2. 7-9 Вольт. Наиболее часто встречается подобное напряжение на рациях. Каждая компания выпускает свои рации со своими нюансами, потому конкретных рекомендаций дать проблематично. Но поскольку рации часто приходят в негодность, проблем с получением бесплатного зарядного устройства не возникает.
  3. 12 Вольт. 12 Вольт является стандартным показателем напряжения для сегмента микроэлектротехники. Встречаются 12 Вольт повсеместно. В тех же компьютерных блоках они присутствуют обязательно. Здесь изоляция — это синий, а не красный провод. 12 Вольт считается оптимальным решением, потому рекомендуем вам остановиться именно на нем.
  4. 3,3 В. Многие могут сказать, что подобный номинал слишком мал, потому особой популярностью пользоваться не будет. Частично это справедливое утверждение. Но исключением является ситуация, где в дело идет RGB светодиод SMD0603. Только учтите, что при падении в прямом направлении напряжения более 3 В, могут возникнуть проблемы.

Заставляем RGB мигать

Эта схема наиболее интересная, поскольку позволяет использовать указанные светодиоды SMD.

  • Для подключения SMD 0603 идеальным источником напряжения станет не батарейка, а блок питания от вашего компьютера. По меньшей мере, протестировать схему с его помощью можно;
  • Вам потребуется установить резисторный делитель;
  • Чтобы сделать это своими руками, вам потребуется схема и техническая документация. Они позволят дать оценку сопротивлением p-n переходов в прямом направлении, используя тестер;
  • Непосредственно прямое измерение здесь недопустимо;
  • Вместо этого собирается схема.

Принцип действия

Светодиод с мигающим световым излучением – это стандартный лэд-кристалл, в электрическую схему питания которого включены задающие режим функционирования емкость и резистор. Внешне он ничем не отличается от обычных аналогов. При этом механизм его работы на уровне процессов, происходящих в электрической цепи, сводится к следующему:

  1. При подаче тока на резистор R накапливается заряд и напряжение в конденсаторе С.
  2. При достижении его потенциала 12 вольт образуется пробой в p-n-границе в транзисторе. Это повышает проводимость, что и инициирует производство светового потока лед-кристаллом.
  3. Когда напряжение снижается, транзистор снова становится закрытым и процесс начинается заново.

Все модули такой схемы функционируют на единой частоте.

Что нужно для изготовления

Можно купить готовый светодиод, который при подаче питающего напряжения начнет мигать. В таком приборе, помимо обычного p-n перехода, имеется встроенная электронная схема, выполненная по следующему принципу:

Основой прибора служит задающий генератор. Он вырабатывает импульсы с относительно высокой частотой – несколько килогерц или десятков килогерц. Рабочая частота определяется параметрами цепочки RC. Емкость и сопротивление конструктивные – ими служат элементы устройства светодиода. Таким способом большую емкость получить не удается без существенного увеличения габаритов прибора. Поэтому произведение RC невелико, и работа на высоких частотах – вынужденная мера. При частоте в несколько килогерц человеческий глаз не различает мигание светодиода, и воспринимает его как постоянное свечение, так что вводится дополнительный элемент – делитель частоты. Последовательным делением он снижает частоту до нескольких герц (зависит от напряжения питания). Такое решение по массогабаритным показателям выгоднее применения конденсатора с большой емкостью. Наименьшее напряжение питания готового мигающего светодиода — около 3,5 вольт.

Устройство и принцип работы

Мигалка состоит из следующих элементов:

  • источник питания;
  • сопротивление;
  • конденсатор;
  • транзистор;
  • светодиод.

Работает схема по очень простому принципу. В первой фазе цикла транзистор «закрыт», то есть не пропускает ток из источника питания. Соответственно, светодиод не светится. Конденсатор расположен в цепи до закрытого транзистора, потому накапливает электрическую энергию. Происходит это до тех пор, пока напряжение на его выводах не достигнет показателя, достаточного для обеспечения так называемого лавинного пробоя. Во второй фазе цикла накопленная в конденсаторе энергия «пробивает» транзистор, и ток проходит через светодиод. Он вспыхивает на короткое время, а затем опять гаснет, так как транзистор опять закрывается. Далее мигалка работает в циклическом режиме и все процессы повторяются.

Принципиальная схема

Если же единственное место возможного питания – электросеть, то можно мигающий светодиод подключить по очень хорошо зарекомендовавшей себя схеме, показанной на рисунке. На резисторах R1-R3 падает избыточное напряжение. Резисторов три по 75 кОм, а не один на 220 кОм потому что желательно сделать линию длиннее, чтобы гарантировано избежать пробоя. Диод VD1 служит выпрямителем. Конденсатор С1 – накопительный. Теперь самое интересное, – в схеме есть стабилитрон VD1. В принципе, если бы светодиод HL1 был бы не мигающем надобности в этом стабилитроне не было бы, как и в резисторе R4.

Но НИ – мигающий светодиод. Потому в те моменты времени когда он гаснет его сопротивление сильно возрастает и, соответственно, возрастает и падающее на нем напряжение. Если не будет стабилитрона VD1 прямое напряжение на НИ в момент его гашения достигнет 300V и может быть даже больше. Что приведет к выходу его из строя. Здесь же есть стабилитрон, который ограничит напряжение на светодиоде в те моменты, когда он будет погашен.

Напряжение стабилизации стабилитрона совсем не обязательно должно быть12V. Стабилитрон может быть на любое напряжение, которое нормально выдерживает светодиод в погашенном состоянии. Но не ниже его прямого напряжения в горящем состоянии. То есть, где-то от ЗV до 30V. Практически любой стабилитрон на любое напряжение в этих пределах. Соответственно, конденсатор С1 должен быть на напряжение не ниже напряжения стабилитрона.

Резистор R4 нужен для того, чтобы ограничить ток разрядки конденсатора через светодиод в момент его зажигания. В принципе, можно обойтись и без него, но велика вероятность что светодиод долго не прослужит. Так что R4 здесь на всякий случай. Особенно актуален R4 при использовании стабилитрона на напряжение у верхнего предела (до 30V). Потому что чем выше это напряжение, тем будет больше бросок тока в момент зажигания светодиода.

Принцип действия светодиода

Прежде, чем подключить светодиод, необходимо знать минимум теории. В районе p-n перехода за счёт существования дырочной и электронной проводимости образуется зона с нестандартными для толщи основного кристалла энергетическими уровнями.

При рекомбинации носителей заряда освобождается энергия, и если величина её равна кванту света, то спай двух материалов начинает лучиться. Оттенок зависит от некоторых величин, а соотношение выглядит следующим образом:

E = h c / λ, где h = 6,6 х 10-34 – постоянная Планка, с = 3 х 108 – скорость света, а греческой буквой лямбда обозначается длина волны (м)

Из этого утверждения следует, что может быть создан диод, где разница энергетических уровней составляет Е.

Это и будет искомое. Именно так изготавливаются светодиоды. А в зависимости от разницы уровней, цвет может быть синим, красным, зелёным и пр.

Причём не все светодиоды обладают одинаковым КПД. Самыми слабыми являются синие, которые и исторически появились одними из последних.

КПД светодиодов сравнительно мал (для полупроводниковой техники) и редко дотягивает даже до 45%.

Но при всем этом удельное превращение электрической энергии в полезную световую просто потрясающее.

Каждый Вт энергии может давать фотонов в 6-7 раз больше, нежели спираль накала в тех же условиях потребления. Это объясняет, почему светодиоды сегодня занимают прочную позицию в осветительной технике.

Именно по этой же причине и создание мигалки на основе этих полупроводниковых элементов несравненно проще. Достаточно сравнительно малых напряжений, чтобы схема начала работать.


Все остальное сводится к тому, чтобы правильным образом подобрать ключевые и пассивные элементы для создания пилообразного или импульсного напряжения нужной формы:

Амплитуда. Скважность. Частота следования.

Как это сделать? Очевидно, что подключение светодиода к сети 220В будет не лучшей идеей.

Имеются подобные схемы, но заставить их мигать достаточно сложно, потому что элементная база для этого ещё не создана.

Обычно светодиоды работают от гораздо более низких питающих напряжений. Из них самыми доступными являются:

Напряжение +5 В присутствует в устройствах заряда телефонных аккумуляторов, а также iPad и других гаджетов.

Правда, выходной ток в этом случае невелик, но в большинстве случаев это и не нужно. Кроме того, +5 В можно найти на одной из шин блока питания персонального компьютера.

В этом случае с ограничением по току никаких проблем не будет. Провод в этом случае красного цвета, а землю ищите на чёрном.

Напряжение от +7 до +9 В часто встречается на зарядных устройствах ручных радиостанций, в обиходе называемых рациями.

Великое множество фирм, и у каждой свои стандарты

На наш взгляд схема подключения светодиода будет лучше всего работать от +12 В.

Это стандартное напряжение в микроэлектроники, его можно встретить во многих местах. Также компьютерный блок содержит вольтаж -12 В. Изоляция жилы синяя, а сам провод оставлен для совместимости со старыми приводами.

В нашем случае он может понадобиться в том случае, если не окажется под рукой элементной базы для питания +12 В. Тогда будет достаточно найти комплементарные транзисторы и включить их вместо исходных. Номиналы пассивных элементов остаются теми же. Сам светодиод также включается обратной стороной.

Номинал -3,3 В на первый взгляд кажется невостребованным.

Но если посчастливится достать на aliexpress RGB светодиоды SMD0603 по 4 рубля за штуку, то можно будет не воротить горы.

Однако! Падение напряжения в прямом направлении не должно превышать 3 В (обратное включение не понадобится, но в случае неправильной полярности максимальный вольтаж составляет 5).

Теперь, когда устройство светодиода нам вполне понятно, а условия горения известны, приступим к реализации нашей задумки. А именно – заставим элемент мигать.

Изменение размеров схемы

В качестве первого шага для этого следует взглянуть на физические размеры всех компонентов схемы и представить, как их можно разместить в небольшом объеме. На рис. 6 показан пример трехмерного изображения компактного расположения компонентов. Тщательно проверьте эту компоновку, определив все пути соединений, и вы увидите, что все здесь выполнено в соответствии со схемой. Проблема состоит в том, что, если компоненты спаять представленным образом, то они не будут достаточно прочно зафиксированы. Все соединительные провода могут легко сгибаться, и поэтому не существует очень простого способа для монтажа схемы.


Рис. 6. Такая компоновка компонентов полностью повторяет их подключение на изображении схемы, и при этом они размещены в очень малом объеме.

Ответ состоит в том, чтобы разместить все компоненты на некоторой основе, которая является одним из тех элементов, которыми предпочитают пользоваться люди, занятые в электронике, возможно потому, что тогда монтаж выглядит более солидно, чем «макетная плата». Перфорированная плата это именно то, что нам нужно. На рис. 7 показаны компоненты, перенесенные на кусок такой платы размером всего лишь 25×10 мм.


Рис. 7. Перфорированная плата может быть использована для крепления и компоновки компонентов. Для создания работающей схемы выводы компонентов под платой припаиваются друг к другу. На рисунке в середине пунктирными линиями показано расположение выводов элементов на обратной стороне платы. На рисунке внизу представлена обратная сторона платы после переворачивания ее слева направо. Небольшие кружки показывают те места, где должны быть выполнены соединения пайкой

На центральном варианте изображения платы штриховыми линиями показано каким образом компоненты будут соединены друг с другом. Большинство выводов компонентов схемы, которые выходят на нижнюю сторону перфорированной платы, по своей длине достаточны для выполнения таких соединений.

Наконец на нижнем изображении показана перфорированная плата после ее переворота обратной стороной слева направо (следует заметить, что для изображения обратной стороны платы я использовал более темные цвета). Небольшие кружки на этом изображении показывают те места, где должны быть выполнены соединения пайкой.

Светодиод должен быть легко отсоединяем, поскольку вы можете захотеть сделать так, чтобы светодиод находился на некотором.

расстоянии от платы. Точно также должен легко отсоединяться и источник питания. К счастью, мы имеем возможность купить миниатюрные разъемы, которые устанавливаются прямо в перфорированную плату. Вы можете обратиться к одному из крупных розничных поставщиков в Интернете для приобретения таких разъемов. Некоторые , в то время как другие называют «однорядной многоконтактной колодкой гнезд или штырьков для установки на плату». Посмотрите на приведенный ранее и проверьте список необходимых закупок компонентов для выполнения экспериментов в данной главе.

Это достаточно компактное размещение элементов схемы, которое требует внимательной работы, исполняемой с помощью паяльника-карандаша. Поскольку отрезок перфорированной платы настолько мал, что ее будет трудно удержать, я предлагаю вам использовать миниатюрные тиски, чтобы зафиксировать в них плату, которую тем не менее можно будет легко поворачивать.

Когда выполняются такого рода проекты, я люблю устанавливать плату (с присоединенными тисками) на мягкий кусок полиуретановой губки — это тип уплотнения, который обычно используется в качестве набивки для мягких кресел. Губка защищает компоненты от повреждения, когда плата находится в перевернутом состоянии, а также помогает предотвратить перемещение платы непредсказуемым образом.

Чем протереть лампу?

Если все же отпечатков на стекле избежать не удалось, не стоит отчаиваться. Спасти положение может протирание спиртосодержащим раствором. Лучше всего подойдут:

  • спирт;
  • одеколон;
  • духи;
  • средство для снятия лака;
  • ацетон;
  • водка.

К нежелательным последствиям может привести не только неправильная смена прибора, но и небрежный уход. Часто возникает ситуация, когда на лампе скопилась грязь или пыль. Такой контакт тоже способен навредить изделию. Поэтому его рекомендуется вовремя протирать

Но делать это тоже нужно правильно и осторожно

У любого осветительного прибора свой срок эксплуатации

Он может быть рассчитан на полгода или на несколько лет, но, если не обращать внимания на пожелания производителей и халатно относиться к мерам предосторожности, не стоит сетовать на низкое качество освещения или скорую поломку

Обычный светодиод мигает

Схема мигающего светодиода

Схема, изображенная рисунком, использует для работы лавинный пробой транзистора. КТ315Б, используемый в качестве ключа, имеет максимальное обратное напряжения между коллектором и базой 20 вольт. Опасного в таком включении мало. У модификации КТ315Ж параметр составляет 15 вольт, гораздо ближе выбранному напряжению питания +12 вольт. Транзистор использовать не стоит.

Лавинный пробой нештатный режим p-n перехода. За счет превышения обратного напряжения между коллектором и базой происходит ионизация атомов ударами разогнавшихся носителей заряда. Образуется масса свободных заряженных частиц, увлекаемых полем. Очевидцы утверждают: для пробоя транзистора КТ315 требуется обратное напряжение, приложенное между коллектором и эмиттером, амплитудой 8-9 В.

Пара слов о работе схемы. В первоначальный момент времени начинает заряжаться конденсатор. Подключен на +12 вольт, остальная часть схемы оборвана – закрыт транзисторный ключ. Постепенно разница потенциалов повышается, достигает напряжения лавинного пробоя транзистора. Напряжение конденсатора резко падает, параллельно подключены два открытых p-n перехода:

  1. Транзисторный находится в режиме пробоя.
  2. Светодиод открыт за счет прямого включения.

В сумме напряжение составит порядка 1 вольта, конденсатор начинает разряжаться через открытые p-n переходы, только напряжение падает ниже 7-8 вольт, везение кончается. Транзисторный ключ закрывается, процесс повторяется заново. Схеме присущ гистерезис. Транзистор открывается при более высоком напряжении, нежели закрывается. Обусловлено инерционностью процессов. Видим, как работает светодиод.

Номиналы резистора, ёмкости определяют период колебаний. Конденсатор можно взять значительно меньше, включив меж коллектором транзистора и светодиодом небольшое сопротивление. Например, 50 Ом. Постоянная разряда резко увеличится, проверить светодиод визуально будет проще (возрастет время горения). Понятно, ток не должен быть слишком большим, максимальные значения берутся из справочников. Не рекомендуется вести подключение светодиодных светильников из-за низкой термостабильности системы и наличия нештатного режима транзистора. Надеемся, обзор получился интересным, картинки доходчивыми, объяснения ясными.

Моргающий световой сигнал находит широкое применение – от особого режима работы фонарей до индикации сложной аппаратуры. В его основе все чаще используется мигающий светодиод, как надежная и долговечная альтернатива любым другим видам светоисточников.

Рассмотрим, каков его принцип действия, какие готовые решения подобного прибора доступны сегодня на рынке, как сделать, чтобы лед-элемент, функционирующий в обычном режиме, стал работать в мерцающем ритме, какова общая сфера их применения, а также как своими руками на их основе изготовить гирлянды и бегущие огни.

Основные выводы

Мигающий светодиод – это стандартный лед-элемент, оснащенный для специфического ритмичного свечения резистором и конденсатором, работающий по следующему принципу:

  1. Поступающий ток накапливает заряд на резисторе.
  2. По достижении заданного потенциала происходит пробой в p-n-переходе транзистора – ток проходит, светодиод вспыхивает.
  3. По мере снижения заряда транзистор закрывается и процесс повторяется.

Схема распространенного мигающего самодельного светодиода может включать один или пару транзисторов. При самостоятельной их сборке нужно заранее подготовить все необходимые компоненты и требуемые в ходе работы инструменты. Область применения мерцающих лед-светильников огромна – от игрушек и гирлянд до сигнализации, индикации и систем дистанционного управления.

Область применения

Светодиоды, функционирующие в мигающем ритме, применяются в различных областях:

  1. В развлекательной сфере, в игрушках, для украшения декора, в качестве гирлянд.
  2. Как индикация в бытовых и промышленных приборах.
  3. Светосигнализирующих устройствах.
  4. В элементах рекламы, вывесках.
  5. Информационных табло.

Важно! Светодиоды, излучающие свет в мигающем заданном ритме, применяются не только в видимом диапазоне спектра, но также в инфракрасном и ультрафиолетовом сегментах. Область их назначения – системы автоматизации и дистанционного управления различной техники – отоплением, вентиляцией, бытовыми приборами.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]