О том, как самостоятельно выполнить расчет ветрогенератора, мы рассказывали в одном из прошлых материалов. Сегодня вашему вниманию будут представлены модели ВЭУ, построенные пользователями нашего портала. Также мы поделимся полезными советами, которые помогут собрать установку и не допустить при этом ошибок. Строительство ветрогенератора своими руками – задача сложная. Безошибочно справиться с ее решением может далеко не каждый (даже опытный) практик. Впрочем, любая вовремя обнаруженная ошибка может быть исправлена. На то мастеру – голова и руки.
В статье рассмотрены вопросы:
- Из каких материалов и по каким чертежам можно изготовить лопасти ветрогенератора.
- Порядок сборки аксиального генератора.
- Стоит ли переделывать автомобильный генератор под ВЭУ и как это правильно сделать.
- Как защитить ветрогенератор от бури.
- На какой высоте устанавливать ветрогенератор.
Изготовление лопастей
Если у вас еще нет опыта в самостоятельном изготовлении винтов для домашней ВЭУ, рекомендуем не искать сложных решений, а воспользоваться простым методом, доказавшим свою эффективность на практике. Заключается он в изготовлении лопастей из обыкновенной канализационной ПВХ трубы. Этот метод прост, доступен и дешев.
Михаил26 Пользователь FORUMHOUSE
Теперь о лопастях: сделал из 160-й рыжей канализационной трубы со вспененным внутренним слоем. Делал по расчету, представленному на фото.
«Рыжая» труба упомянута пользователем не случайно. Именно этот материал лучше держит форму, устойчив к температурным перепадам и дольше служит (в сравнении с серыми трубами ПВХ).
Чаще всего в домашней ветроэнергетике используются трубы диаметром от 160 до 200 мм. С них и следует начинать свои эксперименты.
Форма и конфигурация лопастей – это параметры, которые зависят от диаметра трубы, из которой они изготовлены, от диаметра ветроколеса, от быстроходности рабочего винта и других расчетных характеристик. Чтобы не забивать себе голову аэродинамическими расчетами, вы можете воспользоваться готовой таблицей, которую выложил в соответствующей теме нашего портала ее автор. Она позволит определить геометрию лопастей, подставляя в расчетную таблицу свои собственные значения (диаметр трубы, быстроходность винта и т. д.).
Михаил26
Приноровился пилить электролобзиком. Получается реально быстро и качественно. Примечание: обязательно ставьте большой свободный ход пилки на лобзик, чтобы пилку не закусывало и не ломало.
Как выбрать и изготовить модель ветронасоса для воды своими руками
Работу рекомендуется построить в такой последовательности:
- Выполняется расчет оптимального размера лопастей, после чего из металлического листа толщиной 1 мм вырезается необходимое количество деталей .
- Изготавливаются спицы для лопастей. Для этого берут металлические трубки нужной длины диаметром около 12 мм.
- В ступице, на которой крепятся лопасти, на токарном станке выполняют нужное число отверстий – гнезд. Спицы вставляют в гнезда ступицы и зажимают болтами.
- Лопасти фиксируют на несущих спицах методом клепки.
- Чтобы изготовить стабилизатор ветряка, используют листовой дюралюминий около 5 мм толщиной. Увеличить его жесткость можно с помощью проволочного каркаса. Стабилизатор крепится на ветряк с помощью алюминиевой трубки диаметром около 32 мм.
- Для сборки редуктора ветрогенератора используют листовую сталь толщиной 5 мм. Из нее вырезают и сваривают деталь корпуса. В качестве шестерней можно использовать аналогичные детали старых советских авто, которые подходят по размеру к готовому корпусу. Для заполнения пространства между днищем и шестернями редуктора приготавливают смесь литола и нейтрального масла, чтобы готовый состав имел текучее кашеобразное состояние.
- В качестве мачты для ветряка используют трубы диаметром 10 см с фланцевым соединением.
- Для конструкции насоса изготавливают специальный насосный ящик. Для работы потребуются металлические листы толщины не менее 2 мм, из которых вырезают подходящие по размеру детали и сваривают их в единую конструкцию. Внутрь устанавливается обычная модель бытового ручного насоса, диаметр цилиндра которого составляет 76-80 мм. Если его необходимо заставить работать в горизонтальном положении, штатные клапаны заменяют резиновыми деталями того же размера.
Конструкция аксиального генератора
Делая выбор между трехфазным или однофазным генератором, лучше остановить свой выбор на первом варианте. Трехфазный источник тока менее подвержен вибрациям, возникающим из-за неравномерности нагрузки, и позволяет получать постоянную мощность при одинаковых оборотах ротора.
BOB691774 Пользователь FORUMHOUSE
Однофазные генераторы мотать не стоит: испытано и давно проверено на практике. Только на трех фазах можно получить достойные генераторы.
Расчетные параметры генератора, о которых мы рассказывали в нашем предыдущем материале, определяются текущими потребностями в электроэнергии. И чтобы на практике они соответствовали объему вырабатываемой мощности, конструкция аксиального генератора должна отвечать определенным требованиям:
- Толщина всех дисков (ротора и статора) должна равняться толщине магнитов.
- Оптимальное соотношение катушек и магнитов – 3:4 (на каждые 3 катушки – 4 магнита). На 9 катушек – 12 магнитов (по 6 на каждый диск ротора), на 12 катушек – 16 магнитов и так далее.
- Оптимальное расстояние между двумя соседними магнитами, расположенными на одном диске, равно ширине этих магнитов.
Увеличение расстояния между двумя соседними магнитами приведет к неравномерной выработке электроэнергии. Уменьшить это расстояние можно, но лучше, все же, соблюдать оптимальные параметры.
Aleksei2011 Пользователь FORUMHOUSE
Ошибочно делать расстояние между магнитами равным половине ширины магнита. Один человек оказался прав, когда говорил, что расстояние должно быть не меньше ширины магнита.
Если не вникать в скучную теорию, то схема перекрытия катушек аксиального генератора постоянными магнитами на практике должна выглядеть следующим образом.
В каждый момент времени одинаковые полюса магнитов аналогичным образом перекрывают обмотки катушек отдельно взятой фазы.
Aleksei2011
Вот так в реале: всё совпадает с рисунком почти на 100%, только катушки совсем немного отличаются по форме.
Последовательность сборки аксиального генератора рассмотрим на примере устройства, собранного пользователем Aleksei2011.
Aleksei2011
На этот раз я делаю дисковый аксиальный генератор. Диаметр дисков – 220 мм, магниты – 50*30*10 мм. Всего – 16 магнитов (по 8 штук на дисках). Катушки мотал проводом Ø1.06 мм по 75 витков. Катушек – 12 штук.
Результат работы ветряка: расчет эффективности
Тестовые испытания ветрогенератора при разной скорости ветра показали следующие результаты:
- при скорости ветра 5 м/с получаем 60 об/мин — 7 В и 2,3 А = 16 Вт;
- при скорости ветра 10,6 м/с получаем около 120 об/мин — 13 В и 3,4 А = 44 Вт;
- при скорости 15,3 м/с примерно 180 об/мин — 15 В и 5,1 А = 76,5 Вт;
- при скорости ветра 18 м/с получаем 240 об/мин — 18 В и 9 А = 162 Вт.
В основном ветряк выдает 16–45 Вт, так как ветер более 15 м/с бывает редко. Однако, если поставить скоростной винт, тогда можно получить более высокие результаты.
Изготовление статора
Как видно на фото, катушки имеют форму, похожую на вытянутую каплю воды. Это делается для того, чтобы направление движения магнитов было перпендикулярным длинным боковым участкам катушки (именно здесь индуцируется максимальная ЭДС).
Если используются круглые магниты, внутренний диаметр катушки должен примерно соответствовать диаметру магнита. Если же используются квадратные магниты, конфигурация витков катушки должна быть построена таким образом, чтобы магниты перекрывали прямые отрезки витков. Установка более длинных магнитов особого смысла не имеет, ведь максимальные значения ЭДС возникают лишь на тех участках проводника, которые расположены перпендикулярно направлению движения магнитного поля.
Изготовление статора начинается с намотки катушек. Катушки проще всего мотать по заранее заготовленному шаблону. Шаблоны бывают самыми разными: от небольших ручных приспособлений до миниатюрных самодельных станков.
Катушки каждой отдельно взятой фазы соединяются между собой последовательно: конец первой катушки соединяется с началом четвертой, конец четвертой – с началом седьмой и т. д.
Напомним, что при соединении фаз по схеме «звезда» концы обмоток (фаз) устройства соединяются в один общий узел, который будет являться нейтралью генератора. При этом три свободных провода (начало каждой фазы) подключаются к трехфазному диодному мосту.
Когда все катушки будут собраны в единую схему, можно готовить форму под заливку статора. После этого погружаем в форму всю электрическую часть и заливаем эпоксидной смолой.
Aleksei2011
Далее выкладываю фото готового статора. Заливал обычной эпоксидной смолой. Снизу и сверху стеклоткань положил. Внешний диаметр статора – 280 мм, внутреннее отверстие – 70 мм.
Обслуживание вертикального прибора
Чтобы ветряной вертикальный генератор работал качественно, четко и максимально эффективно, все движущиеся части конструкции обязательно смазывают. Такую процедуру проводят не реже 2 раз за весь календарный год.
Параллельно во время обслуживания подкручивают разболтавшиеся в результате эксплуатации гайки, укрепляют электрические соединения, проверяют механические узлы на наличие коррозийных проявлений, подтягивают ослабшие растяжечные тросы и внимательно осматривают лопасти на предмет разрыва или повреждения.
Зимой за вертикальными установками нужен особый уход. В период морозов лопасти покрываются коркой льда и ее необходимо своевременно очищать, чтобы скорость крутящего момента сохранялась на должном уровне
Покраску деталей производят по мере надобности и 1 раз в год совершают полное обследование всей конструкции на предмет выявления неисправностей. Такой уход обеспечивает корректную работу ветряной установки и продлевает ее эксплуатационный период.
Изготовление ротора для аксиальника
Чаще всего самодельные аксиальные генераторы делают на основе автомобильной ступицы и совместимых с ней тормозных дисков (можно использовать самодельные металлические диски, как это сделал Aleksei2011). Схема будет следующей.
В этом случае диаметр статора больше, чем диаметр ротора. Это позволяет прикрепить статор к раме ветрогенератора с помощью металлических шпилек.
Aleksei2011
Шпильки для крепления статора М6 стоят (в количестве 3-х штук). Это исключительно для теста генератора. Впоследствии их будет 6 штук (М8). Я думаю, что для генератора такой мощности этого будет вполне достаточно.
В некоторых случаях диск статора крепится к неподвижной оси генератора. Подобный подход позволяет сделать конструкцию генератора менее габаритной, но принципы работы устройства от этого не меняются.
Противоположные магниты должны быть направлены друг к другу разноименными полюсами: если на первом диске магнит обращен к статору генератора своим южным полюсом «S», то противоположный ему магнит, расположенный на втором диске, должен быть обращен к статору полюсом «N». При этом магниты, расположенные рядом на одном диске, также должны быть сориентированы разнонаправлено.
Сила магнитного поля, которое создают неодимовые магниты, довольно велика. Поэтому регулировать расстояние между дисками статора и ротором генератора следует, используя шпилечно-резьбовое соединение.
Это вариант конструкции, в которой диаметр ротора больше диаметра статора. Статор в этом случае крепится к неподвижной оси устройства.
Также для регулировки расстояния между дисками можно использовать распорные втулки (или шайбы), которые устанавливаются на неподвижную ось генератора.
Расстояние между магнитами и статором должно быть минимальным (1…2 мм). Клеить магниты на диски генератора можно обыкновенным суперклеем. Правильнее всего осуществлять наклейку магнитов, используя заранее заготовленный шаблон (например, из фанеры).
Вот, что показали предварительные испытания генератора, выполненные пользователем Aleksei2011 с помощью шуруповерта: при 310 об/м с устройства было снято 42 вольта (соединение – звездой). С одной фазы получается 22 вольта. Расчетное сопротивление одной фазы – 0.95 Ом. После подключения АКБ шуруповёрт смог раскрутить генератор до 170 об/м, ток зарядки при этом составил 3.1А.
После длительных экспериментов, которые были связаны с модернизацией рабочего винта и другими менее масштабными усовершенствованиями, генератор продемонстрировал свои максимальные характеристики.
Aleksei2011
Наконец, к нам пришёл ветер, и я зафиксировал максимальную мощность ветряка: ветер усилился, а порывы временами достигали 12 – 14м/с. Максимальная зафиксированная мощность – 476 Ватт. При ветре 10м/с ветряк выдаёт примерно 300 Ватт.
Как сделать вертел для мангала, в чем отличия ручного от электрического?
Шампура — неотъемлемый атрибут для приготовления шашлыков. Но их успешно может заменить один вертел. При этом его не обязательно покупать, смастерить своими руками вполне по плечу любому.
Для чего нужен вертел?
Вертел — это длинный штырь/прут, который заканчивается ручкой с одной стороны и острым концом с другой. Снабжается зажимами для удержания на нем мяса.
Первоначально используется для готовки на огне целых туш животных: поросенка, барашка, бычка или их крупных частей. Но можно увидеть на вертеле и перепелов, окорочка и ряд шпикачиков, нанизанных друг за другом.
На заметку! Толщина вертела подбирается в зависимости от веса мяса, который вы будете готовить.
Мастера советуют выбирать диаметр вертела 10 мм для небольших кусочков мяса. Если же планируется регулярно жарить неразделанные туши, рассчитывать надо на 12-16 мм толщины.
Круглый или квадратный в сечении?
- С круглой оси вертела мясо может соскальзывать, и появляется риск недожаривания. Зато проворачивать вертел и закреплять на нем мясной продукт легче.
- Квадратные стержни обеспечат прочное закрепление тушки, но необходимо будет потрудиться с нанизыванием куска на прут и его вращением в процессе готовки.
- Плоская форма основания хороша для средних и маленьких кусочков, когда толщина вертела не больше 10 мм. Мясо надежно закрепляется на таких стержнях и не падает вниз.
Заключение
Вертел, как альтернатива шампурам интересный вариант для тех, кому наскучил обычный шашлык. Сделать его можно и самостоятельно. Главное, заострить внимание на выборе металла, формы и надежном приводе – для автоматического вращения.
Как сделать вертел для мангала, в чем отличия ручного от электрического? Ссылка на основную публикацию
Ветроэнергетическая установка из автомобильного генератора
Популярным решением среди людей, практикующих изготовление ВЭУ своими руками, является переделка автомобильного генератора под альтернативные нужды. Несмотря на всю привлекательность подобной затеи, следует отметить, что автомобильный генератор в том виде, в котором он устанавливается на двигатель транспортного средства, довольно проблематично использовать в составе ветроэнергетической установки. Разберемся – почему:
- Во-первых, обмотка катушек стандартного автомобильного генератора состоит всего из 5…7 витков. Следовательно, чтобы такой генератор начал давать зарядку АКБ, его ротор необходимо раскрутить примерно до 1200 об/мин.
- Во-вторых, магнитная индукция в стандартном автомобильном генераторе возникает благодаря катушке возбуждения, которая встроена в ротор устройства. Чтобы такой генератор смог работать без подключения к дополнительному источнику питания, его необходимо оснастить постоянными магнитами (желательно – неодимовыми) и внести определенные коррективы в обмотку статора.
Михаил26
Переделанный автогенератор (на магниты) имеет право на жизнь. У меня сейчас два таких. На ветре 8 м/с с двухметровыми винтами дают честные 300 Ватт каждый.
Переделка автомобильного генератора под ВЭУ требует определенной сноровки. Поэтому приступать к ней желательно, имея за плечами опыт перемотки асинхронных двигателей или генераторов со стандартным цилиндрическим статором (и те, и другие при желании можно превратить в альтернативную энергетическую установку). Переделка автомобильного генератора имеет свои нюансы. Понять их будет намного проще, если обратиться к опыту пользователей, которые успели достичь в этой сфере определенных успехов.
Преимущества и принцип работы ветряков
Современный вертикальный генератор – один из вариантов альтернативной энергии для дома. Агрегат способен преобразовать порывы ветра в энергетический ресурс. Для корректной работы он не нуждается в дополнительных устройствах, определяющих направление ветра.
Ветряной генератор роторного типа очень легко изготовить своими руками. Конечно, полностью взять на себя обеспечение частного крупногабаритного коттеджа энергией он не сможет, но с освещением хозяйственных построек, садовых дорожек и придомовой территории справится на отлично
Прибор вертикального типа функционирует на низкой высоте. Для его обслуживания не нужны различные приспособления, обеспечивающие безопасное проведение высотных ремонтных и обслуживающих работ.
Минимум движущихся деталей делает ветряную установку более надежной и эксплуатационно устойчивой. Оптимальный профиль лопастей и оригинальной формы ротор обеспечивают агрегату высокий уровень КПД независимо от того, в каком направлении дует ветер в каждый отдельный момент.
Малые бытовые модели состоят из трех и более легких лопастей, моментально улавливают самый слабый порыв и начинают вращаться, как только сила ветра превышает 1,5 м/с. Благодаря этой способности их эффективность часто превышает КПД крупных установок, нуждающихся в более сильном ветре
Генератор работает абсолютно бесшумно, не мешает хозяевам и соседям, не создает вредных выбросов в атмосферу и надежно служит в течение многих лет, аккуратно поставляя энергию в жилые помещения.
Вертикальный генератор ветрового типа работает по принципу магнитной левитации. В процессе вращения турбин образуются импульсная и подъемная силы, а также сила фактического торможения. Первые две заставляют крутиться лопасти агрегата. Это действие активирует ротор и он создает магнитное поле, вырабатывающее электричество.
Ветряк, имеющий вертикальную ось вращения, по эффективности уступает своим горизонтальным аналогам. Зато не предъявляет претензий к территориальному расположению и полноценно работает практически в любом удобном для домовладельцев месте
Прибор функционирует полностью самостоятельно и не требует вмешательства хозяев в процесс.
Защита кабеля от перекручивания
Как известно, ветер не имеет постоянного направления. И если ваш ветрогенератор будет вращаться вокруг своей оси подобно флюгеру, то без дополнительных мер защиты кабель, идущий от ветрогенератора к другим элементам системы, быстро перекрутится и в течение нескольких дней придет в негодность. Предлагаем вашему вниманию несколько способов защиты от подобных неприятностей.
Способ первый: разъемное соединение
Наиболее простой, но совершенно непрактичный способ защиты заключается в установке разъемного кабельного соединения. Разъем позволяет распутать скрутившийся кабель вручную, отключив ветрогенератор от системы.
w00w00 Пользователь FORUMHOUSE
Я знаю, что некоторые внизу ставят что-то типа штепселя с розеткой. Закрутило кабель – отключил от розетки. Затем – раскрутил и воткнул вилку обратно. И мачту опускать не надо, и токосъёмники не нужны. Я это на форуме по самодельным ветрякам прочитал. Судя по словам автора, все работает и не перекручивает кабель слишком уж часто.
Способ второй: использование жесткого кабеля
Некоторые пользователи советуют подключать к генератору толстые, упругие и жесткие кабели (например, сварочные). Метод, на первый взгляд, ненадежный, но имеет право на жизнь.
user343 Пользователь FORUMHOUSE
Нашел на одном сайте: наш способ защиты заключается в использовании сварочного кабеля с жестким резиновым покрытием. Проблема скрученных проводов в конструкции малых ветровых турбин сильно переоценена, а сварочный кабель #4…#6 имеет особые качества: жесткая резина не дает кабелю скручиваться и препятствует повороту ветряка в одном и том же направлении.
Способ третий: установка токосъемных колец
На наш взгляд, полностью защитить кабель от перекручивания поможет только установка специальных токосъемных колец. Именно такой способ защиты реализовал в конструкции своего ветрогенератора пользователь Михаил 26.
Дополнительное электрооборудование
Как уже было сказано выше, неотъемлемой частью ветряной электростанции является аккумулятор, берущий на себя питание потребителей. при его выборе нужно помнить, что чем больше его емкость, тем дольше он сможет поддерживать напряжение в сети, но при этом и дольше будет заряжаться. Приблизительное время работы можно определить как то время, за которое исчерпается половина емкости аккумулятора (после этого падение напряжения станет уже ощутимым, кроме того, глубокий разряд снижает ресурс свинцово-кислотных батарей).
Пример: Так, аккумулятор емкостью 65 А*ч условно сможет отдавать в нагрузку 30-35 ампер-часов энергии. Много это или мало? Обычная лампа освещения мощностью 60 ватт потребует, с учетом наличия инвертора, преобразующего 12 В постоянного тока в 220 В переменного и имеющего собственный КПД в пределах 70%, тока в 7 ампер — это чуть больше четырех часов работы. Восстанавливать же растраченную энергию наш ветряк с условной мощностью 90 ватт даже в лучшем случае, при постоянном сильном ветре, будет не менее пяти часов. Как вы видите, при использовании ветрогенератора исключительно как автономного источника энергии электричество в вашем доме будет доступным лишь на несколько часов в день.
Вторым узлом системы электроснабжения становится инвертор. В нашем случае можно использовать как готовый автомобильный, так и извлеченный из источника бесперебойного питания. В любом случае важно не перегружать его потреблением тока, учитывая, что реальная эксплуатационная мощность его в 1,2-1,5 раза меньше указываемой максимальной мощности.
Как вы можете видеть, привлекательность использования даровой энергии упирается во многочисленные ограничения, и даже единственный эффективный в средней полосе России вариант — ветрогенератор — неспособен обеспечивать длительную автономность.
Но вместе с тем эта идея неплоха и как источник аварийного электропитания и, особенно, как конструкторская задача — удовольствие от создания своими руками ветрогенераторной установки может в разы превосходить ее мощность.
Защита ветрогенератора от бури
Речь идет о защите устройства от ураганов и сильных порывов ветра. На практике она реализуется двумя способами:
- Ограничением оборотов ветроколеса с помощью электромагнитного тормоза.
- Уводом плоскости вращения винта от прямого воздействия ветрового потока.
Первый способ основан на подключении балластной электрической нагрузки к ветрогенератору. О нем мы уже рассказывали в одной из предыдущих статей.
Второй способ предполагает установку складывающегося хвоста, позволяющего при номинальной силе ветра направлять винт навстречу ветровому потоку, а во время бури, наоборот – уводить винт из-под ветра.
Защита складыванием хвоста происходит по следующей схеме.
- В безветренную погоду хвост расположен немного под наклоном (вниз и в сторону).
- При номинальной скорости ветра хвост выпрямляется, а винт становится параллельно воздушному потоку.
- Когда скорость ветра превышает номинальные значения (например, 10 м/с), давление ветра на винт становится больше, чем сила, создаваемая весом хвоста. В этот момент хвост начинает складываться, а винт уходит из-под ветра.
- Когда скорость ветра достигает критических значений, плоскость вращения винта становится перпендикулярно потоку ветра.
Когда ветер ослабевает, хвост под собственной тяжестью возвращается в исходное положение и поворачивает винт навстречу ветру. Для того чтобы хвост смог вернуться в исходное положение без дополнительных пружин, используется поворотный механизм с наклонным шкворнем (шарниром), который устанавливается на оси поворота хвоста.
Ось поворота хвоста установлена под наклоном: на 20° относительно вертикальной оси и на 45° относительно оси горизонтальной.
Для того чтобы механизм мог выполнять свою основную функцию, ось мачты должна находиться на определенном расстоянии от оси вращения турбины (оптимально – 10 см).
Чтобы при резких порывах ветра хвост не сложился и не попал под винт, с обеих сторон механизма необходимо приварить ограничители.
Рассчитать размеры хвоста и их зависимость от других параметров ВЭУ вам поможет таблица Excel с уже готовыми формулами. В ней желтым цветом обозначена область переменных значений.
Оптимальная площадь хвостового оперения составляет 15%…20% от площади ветроколеса.
Вашему вниманию представлен наиболее распространенный вариант механической защиты ветрогенератора. В том или ином виде он успешно используется на практике пользователями нашего портала.
WatchCat Пользователь FORUMHOUSE
При шторме тормозить винт надо его уводом из-под ветра. У меня, к примеру, при слишком сильном ветре ветряк опрокидывается винтом вверх. Не самый лучший вариант, ведь возврат в рабочее положение сопровождается заметным ударом. Но за десять лет ветряк не сломался.
Ветряной насос для воды своими руками: эффективное решение проблемы водоснабжения
Дата публикации: 19 июля 2019
Жизнь дачников немало осложняет отсутствие загородного водопровода. Полив участка, приготовление пищи, решение прочих бытовых вопросов — все это требует значительного количества воды, таскать которую от ближайшей колонки очень тяжело. Решение проблемы — бурение скважины для последующего забора воды с использованием погружного насоса. Электроэнергию для работы устройство будет получать от централизованной энергосети. Если же качество электроснабжения на участке оставляет желать лучшего, домашний умелец легко сможет самостоятельно сконструировать и установить на участке обычный ветряк. Приходя в движение за счет силы ветра, он обеспечит работу насоса, и из скважины в дом будет стабильно поступать чистая вода.
Каким должен быть вертел
Современные требования:
- устойчивым к длительному нагреву;
- надежным – хорошо фиксировать тушу, чтобы она не сдвигалась относительно стержня, не прокручивалась при вращении, а также не упала с него;
- безопасным – при готовке не выделять в пищу вредные вещества, не опрокидываться;
- удобным при обжарке над углями, а также снятии готового блюда с огня;
- долговечным – не должен гнуться, прогорать, ржаветь в процессе эксплуатации.
Эти требования обеспечивают штанги из нержавеющей стали. Они прочны, не подвергаются коррозии от воздействия маринада, соков, огня
Для чего нужен
Туша на вертеле над огнём – это что-то из детских сказок. Очень аппетитное, брутальное и с глубокими историческими корнями. Ведь что из себя представляет вертел? Это горизонтальный стержень с мясом, часто с тушей или её частью, вращающейся над огнём или углями. Чтобы мясо не прокручивалось предназначены зажимы.
При обычной жарке над огнём, например, на шампурах, соки и жир стекают вниз и теряются для будущего блюда. Вертел вращается, и частота вращения такая, что большая часть соков попадает на кусок, как бы наматывается, образуя вкусную корочку.
Благодаря вращению мясо легко покрывать соусом. Так можно добиться довольно толстой корки с ярким вкусом маринада, специй и дыма. А мясо останется сочным. Этого не достичь без вертела.
Инструмент для процесса
При выборе самого прочного и долговечного материала, такого как металл, необходимо побеспокоиться о средствах индивидуальной защиты, перчатки, защитные очки и одежда с длинными рукавами будут незаменимы.
Во время резки заготовок электроинструментом лучше надежно закреплять куски металла в тисках, мелкие элементы стоит подгонять специальными ножницами, чтобы изделие выглядело аккуратно. Отвертки, ключи, рулетка, угольник и маркер подготавливаются заранее, чтобы приступив к реализации задуманного меньше отвлекаться от процесса.
Узел крепления
Узел крепления выполнен из уголка купленного в строительном магазине. Уголок двумя длинными винтами прикреплен к неподвижной части. Особенности крепления зависят от конкретного конструктивного исполнения головки видеомагнитофона.
Уголок
Уголок доработан
Уголок установлен