Как сделать звукосниматель для акустической гитары


Наверное многие из вас смотрели концерты разных стилей и невозможно было не заметить как играет электрогитара, как мастера этого инструмента исполняют ошеломляющие соло партии. Возможно многим хотелось бы самому что-нибудь попробовать сыграть, поиграться со звуком электрогитары, перебрать несколько струн и почувствовать силу этого инструмента…

Что такое звукосниматель

Что же представляет собой звукосниматель для гитары? Если простыми словами и кратко — это металлические сердечники с магнитами, помещенные внутри катушки индуктивности.

Стальные струны, изменяя свое положение над металлическими сердечниками, создают магнитные колебания. С помощью катушки индуктивности эти изменения магнитного поля превращаются в слабые электрические сигналы.

Выводы катушки индуктивности подключаются к чувствительному входу устройства усиления и обработки звуковых сигналов. Как правило, это специальный вход с высоким коэффициентом усиления сигнала, примером может служить — микрофонный вход звуковой карты персонального компьютера или другого устройства обработки низкочастотных сигналов (20-20000 Герц).

Микрофонный вход обладает высоким коэффициентом усиления и отлично подходит для данных целей, будем его использовать в эксперименте.

Пьезоэлектрический эффект

— способность некоторых материалов генерировать электрический заряд в ответ на приложенное механическое напряжение. Пьезоэлектрические кристаллы проявляют пьезоэлектрический эффект. Этот пьезоэлектрический эффект имеет два свойства. «>Первый — прямой пьезоэлектрический эффект, который означает, что материал обладает способностью превращать механическую деформацию в электрический заряд. Второй — обратный эффект, при котором приложенный электрический потенциал преобразуется в механическую энергию деформации. Пьезоэлемент зажигалки — образец этого эффекта.

Карскас для звукоснимателя

Сперва нам нужно изготовить каркас для будущего гитарного звукоснимателя. Ниже приведен чертеж такого каркаса:

Рис. 1. Чертеж конструкции каркаса для самодельного звукоснимателя к гитаре.

Как видно с чертежа — к основанию с шестью отверстиями крепятся две пластинки сверху и снизу, образуя таким образом челнок для намотки провода катушки индуктивности.

Теперь поэтапно расскажу как можно изготовить такой звукосниматель для гитары, делалось все на скорую руку, потому получилось не очень аккуратно, но вполне работоспособно — конечный результат порадовал.

Приступаем к изготовлению

Сперва каркас был изготовлен из дерева, верхняя и нижняя пластины вырезаны из двухстороннего тонкого фольгированного стеклотекстолита. Дерево желательно брать твердое и плотное, неплохо подойдут — ясень, бук. Вместо дерева можно использовать другие материалы без магнитных свойств — пластмассы, пластик и т.п.

Рис. 2. Деревянный каркас звукоснимателя для гитары.

Рис. 3. Деревянный каркас звукоснимателя для гитары с пластинами из стеклотекстолита.

Зачем пластины из фольгированного стеклотекстолита? — позже, контакт с фольгой для каждой из пластин будет подключен к земле (общему проводу), таким образом образуем дополнительный экран и защиту от помех и наводок.

Углы пластин из стеклотекстолита не заокругливал, позже эта площадь пригодится для крепления в резонирующее отверстие акустической гитары.

Далее нужно было найти материал для сердечников — стальные прутки диаметром около 4мм. Для данной цели была использована стальная направляющая от старого матричного принтера, она немножко большого диаметра — 5мм, тем не менее это отличный материал для сердечников.

Рис. 4. Стальная направляющая от старого матричного принтера.

Подготовив все материалы и зная диаметр сердечников (5мм), можно сверлить шесть отверстий в основании, а потом и в боковых пластинах будущего каркаса.

С помощью линейки и карандаша были размечены шесть отверстий, как изображено на чертеже что на рисунке 1. Для уверенности что все верно, основание каркаса было погружено под струны гитары, в таком положении можно проверить соответствуют ли оси намеченных отверстий осям стру — пришлось немножко подкорректировать.

Для удобства и безопасности сверления, основание из дерева было два раза обернуто в тонкий картон и потом зажато в тиски.

Зажимать нужно аккуратно, с не большим усилием, главное чтобы уверенно держалось. Сверлим отверстия не спеша, очень острым новым сверлом и на больших оборотах. С применением ручной дрели дело это оказалось не простым…

Рис. 5. Сверление отверстий в деревянном основании каркаса звукоснимателя.

Просверлив несколько отверстий ручной дрелью стало понятно что дела плохи. Никак не удавалось получить отверстия четко по центру. Здесь бы хорошо подошел сверлильный станок, но такого агрегата у меня не было.

Было принято решение отказаться от использования дерева, нужен материал с более высокой плотностью и опять же без магнитных свойств — нашелся кусок органического стекла.

С оргстеклом удалось просверлить все отверстия более-менее точно с первого раза.

Рис. 6. Высверливание отверстий в основании каркаса звукоснимателя из органического стекла.

В итоге получился вот такой каркас-основание для будущего звукоснимателя:

Рис. 7. Готовый каркас-основание для будущего звукоснимателя.

Основание каркаса было приложено к одной из стеклотекстолитовых пластин, при помощи шила было намечено где нужно сверлить два крайних отверстия на пластине. Так же само делаем со второй пластиной и сверлим в них намеченные отверстия.

Пришло время изготовить сердечники. Как раньше было написано, для сердечников я использовал направляющие от старого матричного принтера диаметром 5мм.

Нужно отрезать шесть равных по высоте сердечников — для этого берем высоту основания из оргстекла 10мм и прибавляем к ней еще порядка 4мм (толщина двух пластин из текстолита + запас), в результате получается что нужны сердечники высотой около 14мм (лишнее потом можно сточить напильником и точно подогнать).

После того как сердечники готовы, берем два из них и вставляем в крайние отверстия основания, насаживаем на сердечники одну из пластин, сверлим по отверстиям в оргстекле все остальные отверстия в пластине из стеклотекстолита. После этого насаживаем вторую пластинку с другой стороны и также сверлим в ней отверстия.

Вот что получилось в результате труда:

Рис. 8. Заготовка каркаса с просверленными отверстиями.

Края каждой из пластин, по всему периметру, нужно немного прошлифовать — чтобы они не были острыми и при последующей укладке провода на катушку не повредили на нем эмаль.

Рис. 9. Каркас звукоснимателя вместе с сердечниками в сборе.

Для надежного скрепления каркаса, я решил прикрутить пластины к основанию при помощи маленьких винтов-саморезов, такие часто можно встретить в малогабаритных игрушках китайского производства.

Сперва просверлил отверстия в пластинах и основе из оргстекла, используя для этого сверло немножко меньшего диаметра чем диаметр винтиков.

Рис. 10. Крепление пластин к основе с помощью винтиков-саморезов.

Каркас будущего звукоснимателя для акустической гитары готов:

Рис. 11. Каркас для самодельного звукоснимателя в сборе.

Примечание:

Переключение фаза/противофаза также используется в модах темброблока через Push-Pull потенциометры и тумблеры. Хотя можно распаять и на обычную громкость, хоть это и сомнительная затея.

Это все варианты подключения хамбакера. Некоторые из них, скорее всего, Вам не пригодятся. Тот же Jimmy Page брал свой модифицированный леспол на живые выступления, и там он ему здорово помогал, однако при записи можно добиться нужного звука эквалайзерами и пост-обработкой. Также следует помнить, что частая перепайка гитары может плохо сказаться на потенциометрах, и крайне желательно помнить стандартное подключение хамбакера.

Магниты для звукоснимателя

Следующая важная деталь самодельного звукоснимателя — МАГНИТЫ. Нужны мощные магниты небольшой высоты, сначала думал использовать магниты от старых советских защелок для мебели, но по высоте они достаточно большие да и нужно было идти в магазин.

Решение было найдено очень быстро — неодимовые магниты из старых жестких дисков (винчестеров), они очень сильные и малогабаритные, вполне неплохое решение!

Рис. 12. Неодимовые магниты из старых винчестеров для звукоснимателя.

Пьезогенераторы — новые источники электроэнергии. Фантазии или реальность?

Тонкая пьезоэлектрическая пленка на оконном стекле, поглощающая шум улицы и преобразующая его в энергию для зарядки телефона. Пешеходы на тротуарах, эскалаторах метро, которые заряжают через пьезо преобразователи аккумуляторы автономного освещения. Плотные потоки автомобилей на оживленных трассах, вырабатывающие мегаватты электроэнергии, которой хватает для целых городов и поселков.

Фантастика? К сожалению, пока да, и таковой может остаться. Есть большая вероятность, что скоро закончится ажиотаж вокруг сенсационных сообщений о чудесных перспективах генераторов энергии на пьезоэлементах. А мы будем опять мечтать о безопасной, возобновляемой и, что греха таить, дешевой электрической энергии, полученной с привлечением других явлений. Ведь список физических эффектов замечательно велик.

Явление пьезоэлектричества было открыто братьями Джексоном и Пьером Кюри в 1880 году и с тех пор получило широкое распространение в радиотехнике и измерительной технике. Заключается оно в том, что усилие, приложенное к образцу пьезоэлектрического материала, приводит к появлению на электродах разности потенциалов. Эффект обратим, т.е. наблюдается и обратное явление: прикладывая к электродам напряжение, образец деформируется.

В зависимости от направления преобразования энергии пьезоэлектрики делятся на генераторы (прямое преобразование) и двигатели (обратное). Термин “пьезогенераторы” характеризует не эффективность превращения, а только направление преобразования энергии.

Именно первым явлением, связанным с генерацией электричества при механическом воздействии, заинтересовались в последние годы инженера и изобретатели. Как из рога изобилия, посыпались сообщения о возможностях получения электрической энергии, утилизируя уличный шум, движение волн и ветра, нагрузки от перемещения людей и машин.

Сегодня известно несколько примеров практического использования подобной энергии. На станции метро «Марунучи» в Токио установлены пьезогенераторы в зале для приобретения билетов. Скопления пассажиров хватает для управления турникетами.

В Лондоне, в элитной дискотеке, пьезогенераторы питают несколько ламп, которые стимулируют танцующих и . продажу прохладительных напитков. Стали обыденными пьезоэлектрические зажигалки. Сейчас любой курильщик носит в кармане собственную «электростанцию».

Сравнительно недавно взорвало мировую общественность сообщение об испытаниях систем получения энергии от движущегося автотранспорта. Израильские ученые из небольшой фирмы Innowattech подсчитали, что 1 километр автобана может генерировать электрическую мощность до 5 МВт. Они не только выполнили расчеты, но и вскрыли несколько десятков метров полотна автострады и смонтировали под ним свои пьезогенераторы. Казалось, что наконец наступил прорыв в области альтернативной энергетики. Но в этом возникают серьезные сомнения.

Рассмотрим подробней физику процессов, происходящих в пьезоэлектрике. Для знакомства с принципами генерации энергии пьезоэлектрическими материалами достаточно понимания нескольких базовых механизмов. При механическом воздействии на пьезоэлемент происходит смещение атомов в несимметричной кристаллической решетке материала. Это смещение приводит к возникновению электрического поля, которое индуцирует (наводит) заряды на электродах пьезоэлемента.

В отличие от обычного конденсатора, обкладки которого могут сохранять заряды достаточно долго, индуцированные заряды пьезоэлемента сохраняются только до тех пор, пока действует механическая нагрузка. Именно в это время можно получить от элемента энергию. После снятия нагрузки индуцированные заряды исчезают. По сути, пьезоэлемент является источником тока ничтожной величины, с очень высоким внутренним сопротивлением.

Поскольку специалисты компании Innowattech так и не сочли нужным поделиться с широкой общественностью результатами своего эксперимента, попробуем сами сделать грубые численные прикидки эффективности работы пьезоэлектриков в качестве источника энергии. В качестве объекта для расчетов возьмем обычную бытовую пьезозажигалку – единственное изделие, получившее сейчас широкое распространение.

Из обилия технических характеристик пьезоматериалов нам понадобятся всего несколько. Это значение пьезоэлектрического модуля, которое для распространенных (а иных пока промышленность не выпускает) пьезоэлектриков составляет от 200 до 500 пикокулон (10 в минус 12 степени) на ньютон, и характеризует эффективность генерации заряда под воздействием силы.

Эта характеристика не зависит от размеров пьезоэлемента, а полностью определяется свойствами материала. Поэтому пытаться делать более мощные преобразователи за счет увеличения геометрических размеров бессмысленно. Емкость обкладок пьезоэлемента зажигалок известна и составляет около 40 пикофарад.

Рычажная система передачи усилия на пьезоэлемент создает нагрузку приблизительно 1000 ньютонов. Зазор, в котором проскакивает искра — 5 мм. Диэлектрическую прочность воздуха принимаем 1 кВ/мм. При таких исходных данных зажигалка генерирует искры мощностью от 0,9 до 2,2 мегаватта!

Но не стоит пугаться. Длительность разряда составляет всего 0,08 наносекунды, отсюда такие огромные значения мощности. Подсчет же суммарной энергии, генерируемой зажигалкой, дает значение всего 600 микроджоулей. При этом КПД зажигалки, с учетом того, что механическое усилие через рычажную систему полностью передается пьезоэлектрику, составляет всего . 0,12%.

Предлагаемые в разных проектах схемы извлечения энергии близки к режимам работы зажигалок. Отдельные пьезоэлементы генерируют высокое напряжение, которое пробивает разрядный промежуток, и ток поступает на выпрямитель, а затем в накопительное устройство, например, ионистор. Дальнейшее преобразование энергии стандартно и интереса не представляет.

От зажигалок перейдем к задаче получения энергии в промышленных масштабах. Пусть будут использованы наиболее эффективные элементы, генерирующие 10 милливатт на элемент. Собранные в кластеры (группы) по 100-200 элементов, они помещаются под полотно дороги. Тогда для получения заявленной величины мощности порядка 1 МВт на километр дороги потребуется всего. 100 миллионов отдельных элементов с индивидуальными схемами съема энергии. Остается еще задача ее суммирования, преобразования и передачи потребителю. При этом токи элементов, учитывая изменяющуюся нагрузку на дорожное полотно, будут лежать в диапазоне нано или даже пикоампер.

Знакомясь с подобными проектами получения энергии от пьезоэффекта, невольно напрашивается аналогия с гидроэлектростанцией, в которой турбины работают от влаги утренней росы, бережно собранной с окрестных полей.

А как же с экспериментом израильской компании? Отчет о результатах «вредительства» на полотне автострады так и не появился. А ведь впереди выполнение контракта на получении энергии с автострады Венеция – Триест, который заключила фирма Innowattech.

По этому поводу есть одна версия: это , т.е. с высоким риском инвестиционного капитала. Получив более чем скромные предварительные результаты исследователей, ее основатели решили оправдать затраченные деньги инвесторов и провернули великолепный маркетинговый ход – провели эффектное испытание с участием прессы. И весь мир заговорил о маленькой компании. И в этом шуме потерялся основной вопрос: где же мегаватты дешевой энергии?

Намотка катушки

После того как найдены магниты, можно с уверенностью переходить к намотке катушки индуктивности для будущего звукоснимателя. Намотать желательно примерно 2000-3000 витков тонкого медного эмалированного провода диаметром 0,08-0,1мм.

Я решил намотать катушку до заполнения проводом диаметром 0,15мм — им удобно мотать и уменьшается вероятность разорвать провод в процессе намотки.

При намотке тонким проводом диаметром 0,08-0,1мм качество звукоснимателя, скорее всего, будет лучшим и как раз вместится 2-3 тысячи витков.

Провод можно найти на базаре или заказать в интернет-магазине. В крайнем случае, можно отмотать с какого-то трансформатора или катушки от электромагнитного реле.

Рис. 13. Бухта с проводом для намотки катушки будущего звукоснимателя.

Начало провода очищаем от эмали и лудим при помощи паяльника. Отрезаем кусок изолированного проводника длиной 12-15см, очищаем один из его концов от изоляции где-то на 5мм и лудим паяльником.

Прикручиваем к кончику проводника начало эмалированного медного провода и спаиваем их. Нарезаем полосочку изоляционной ленты и изолируем место спайки.

Рис. 14. Начинаем намотку катушки звукоснимателя.

Укладываем в наш каркас заизолированный конец провода и обматываем его несколько десятков витков, для надежной фиксации. Теперь можно смело мотать остальную часть катушки, не опасаясь что провод выползет или уйдет в сторону.

Вот пример фиксации (магниты еще не закреплены, просто держатся за счет силы притяжения к сердечникам):

Рис. 15. Фиксация начала катушки в каркасе звукоснимателя.

После часа-второго намотки (немножко утомительный процесс) катушка индуктивности звукоснимателя была заполнена проводом до предела.

Рис. 16. Катушка звукоснимателя готова.

Конец проводника катушки лудим паяльником и припаиваем ко второму изолированному проводнику. С помощью изоленты изолируем соединение. С помощью нити приматываем заизолированное место спайки проводников к катушке чтобы надежно зафиксировать.

Ломать, не делать

«>Разряд тока, произведенный пьезоэлементом зажигалки, может сломать смартфон. Достаточно будет 8-12 раз «прощелкать» металлические разъемы гаджета, вход для наушников, оголенные части платы. При таком воздействии телефон откажется работать. При этом никаких видимых повреждений или оплавленных элементов не будет. Теперь вы можете с радостью нести сломанный гаджет в салон и требовать возврата денег. В сервисном центре ничего не должны понять.

Но пьезоэлементом газовой зажигалки нельзя вывести из строя обыкновенные «звонилки», сработанные в КНР. Не знаю почему, но даже после 50 ударов слабым током кнопочный телефон продолжил исправно функционировать.

Экранируем звукосниматель

Следующий очень важный и «вкусный» этап — это экранирование катушки звукоснимателя. Экран нужен чтобы обезопасить катушку от помех и наводок. Без экрана есть вероятность услышать вместо звука гитары какое-нибудь радио, в качестве антенны к которому будете выступать вы. ))

Экранировать катушку мы будем используя фольгу, извлеченную из шоколадки (не зря я говорил что этап «вкусный» ). После того как посмаковали шоколада и отдохнули после длительной намотки катушки, можно приступать к делу.

Вырезаем полоску фольги таких размеров, чтобы ее можно было обмотать вокруг катушки звукоснимателя. Можно взять несколько полосок, главное чтобы полностью скрыть катушку под фольгой.

Рис. 17. Вкусная была шоколадка, а фольга нам пригодится.

ВАЖНО: при экранировании у вас не должно получиться замкнутого витка вокруг катушки — полоска из фольги не должна замыкаться в кольцо, иначе получится дополнительная одновитковая катушка из экрана, которая будет мешать нормальной работе звукоснимателя!

В месте где кольцо из фольги после укладки смыкается, нужно изолировать концы полоски друг-от друга с помощью диэлектрика. Проще говоря — сделать так, чтобы концы этого кольцевого экрана не замыкались между собою. В качестве изоляции можно использовать изоленту, скотч, тонкую пленку и т.п.

Также к экрану нужно сделать подключение — взять отрезок изолированного провода и приложить к фольге его зачищенный от изоляции конец, а потом зафиксировать все это скотчом или изолентой.

Соединение лучше всего сделать в точке, которая равномерно отдалена от кончиков фольги, которые изолированы друг от друга и не смыкаются между собою.

__________________ подключать / \ тут ———>| \_________________/

Чтобы получившийся экран не расползался и держался надежно, сверху его можно обмотать изолентой или нитью.

В моем случае ситуация немножко иная: поскольку боковые пластины изготовлены из фольгированного стеклотекстолита, то фольга имеет контакт с медными поверхностями двух пластин (верхняя и нижняя). В данном случае виток из фольги можно замыкать, поскольку получился «замкнутый контейнер» (параллелепипед из экрана).

Рис. 18. Катушка звукоснимателя в экране из фольги и боковых медных стенок стеклотекстолита, экранирована со всех сторон.

В результате имеем почти готовый звукосниматель с тремя выходящими из конструкции проводниками: два — от катушки, и еще один — от экрана.

Рис. 19. Звукосниматель с экранированной со всех сторон катушкой почти готов.

Последнее что нужно сделать — это прикрепить магниты снизу звукоснимателя. Крепление необходимо выполнять так, чтобы каждый сердечник соприкасался с магнитом, позже магниты можно зафиксировать плавким силиконом или же просто обмотать нитью.

Рис. 20. Готовый самодельный звукосниматель для акустической гитары.

Ззвукосниматель фактически готов к испытаниям и работе!

Пьезоэлектрический преобразователь

Пьезоэлектрическая пластина представляет собой устройство, которое использует пьезоэлектрический эффект для измерения давления, ускорения, деформации или силы путем преобразования их в электрический заряд. Пьезоэлектричество — это электричество, генерируемое пьезоэлементом, эффект которого называется пьезоэлектрическим эффектом. Это способность некоторых материалов генерировать напряжение переменного тока (переменного тока) при механическом напряжении или вибрации или вибрировать при воздействии переменного напряжения или и то и другое. Наиболее распространенным пьезоэлектрическим материалом является кварц. Этот эффект оказывает определенная керамика, соли Рошеля и другие другие твердые вещества. Когда звуковая волна ударяет по одной или обеим сторонам пластин, пластины вибрируют. Кристалл поднимает эту вибрацию, что приводит к слабому напряжению переменного тока. Следовательно, между двумя металлическими пластинами возникает напряжение переменного тока, с формой волны, подобной форме звуковых волн. И наоборот, если к пластинам подается сигнал переменного тока, это заставляет кристалл вибрировать синхронно с сигнальным напряжением. В результате металлические пластины также вибрируют и создают акустические помехи.

Практически каждый человек хотя бы один раз в жизни пользовался газовой зажигалкой, например моделью IMCO TRIPLEX, с пьезоэлементом. Это простое в исполнении и полезное в быту устройство позволяет добывать огонь всего одним щелчком. Огонь образуется из-за возгорания газа при контакте с электрическим разрядом, производимым пьезоэлементом зажигалки при нажатии на соответствующую клавишу.

При нажатии кнопки на пьезозажигалке мы слышим треск искры, далее газовая горелка разгорается.

Подключение звукоснимателя

Для подключения звукоснимателя к микрофонному входу компьютера я использовал штекер mini-jack 3,5 (как в стандартных наушниках от плеера).

В качестве соединительного кабеля был использован тонкий экранированный коаксиальный кабель (где-то валялся кусок 2 метра вот и использовал), желательно конечно-же купить микрофонный экранированный кабель но в целях эксперимента и такой вариант сойдет. )

Вот схема по которой был подключен звукосниматель:

Рис. 21. Простая экспериментальная схема включения самодельного звукоснимателя.

Для регулировки громкости звукосниматель можно подключить через переменный резистор, но это здесь скорее всего будет лишним, такая схема оказалась вполне работоспособной, а громкость без проблем можно отрегулировать в компьютерном микшере.

Ну вот и все, такой звукосниматель вполне пригоден для того чтобы попробовать что такое электрогитара, а для игры сложных композиций и быстрых соло без полноценной электрогитары с чувствительными и качественными звукоснимателями не обойтись.

Крепление звукоснимателя в отверстии резонатора акустической гитары было выполнено при помощи изоленты и кусочков резины. Резиновые подкладки нужны чтобы поднять звукосниматель немножко выше к струнам, так чтобы при зажатых струнах они не касались сердечников звукоснимателя, а также чтобы не царапать лакированную поверхность корпуса гитары.

Таким образом, мне не пришлось нечего сверлить и резать в корпусе гитары. В любой момент можно снять звукосниматель, не оставив на гитаре никаких следов его присутствия.

Рис. 22. Самодельный звукосниматель для акустической гитары.

Рис. 23. Самодельный звукосниматель для акустической гитары, вид под углом.

Рис. 23. Самодельный звукосниматель для акустической гитары, общий вид.

LiveInternetLiveInternet

  • Регистрация
  • Вход

—Рубрики

  • капли колме от алкоголизма где купить (50)
  • где купить капли от алкоголизма (49)
  • капли от алкоголизма колме купить (49)
  • капли от алкоголизма отзывы (49)
  • капли колме от алкоголизма цена (49)
  • купить капли от алкоголизма (49)
  • капли от алкоголизма цена (49)
  • капли колме от алкоголизма (49)
  • капли от алкоголизма (49)
  • купить алкостоп капли цена (49)
  • где можно купить капли алкостоп (49)
  • алкостоп цена купить (49)
  • где купить капли алкостоп (49)
  • алкостоп купить в аптеке (49)
  • где можно купить алкостоп (49)
  • алкостоп где купить (49)
  • алкостоп капли купить (49)
  • алкостоп купить (49)
  • купить алкобарьер в аптеках москвы (49)
  • алкобарьер цена и отзывы где купить (49)
  • алкобарьер где купить и цена (49)
  • алкобарьер отзывы купить (49)
  • купить алкобарьер в москве (49)
  • где можно купить алкобарьер (49)
  • средство от алкоголизма купить в аптеке (49)
  • алкобарьер средство купить в аптеке (49)
  • алкобарьер средство от алкоголизма купить (49)
  • алкобарьер купить цена (49)
  • алкобарьер купить в аптеке (49)
  • где купить алкобарьер (49)
  • алкобарьер купить (49)
  • лечение алкоголизма без ведомо больного (49)
  • центр лечения алкоголизма (49)
  • методы лечения алкоголизма (49)
  • лечение больных алкоголизмом (49)
  • лечение алкоголизма без (49)
  • лечение алкоголизма в домашних условиях (49)
  • лечение алкоголизма отзывы (49)
  • клиника лечения алкоголизма (49)
  • лечение алкоголизма (49)
  • кодирование от алкоголизма в москве (49)
  • кодирование от алкоголизма на дому (49)
  • кодирование от алкоголизма в екатеринбурге (49)
  • клиники кодирования от алкоголизма (49)
  • кодирование от алкоголизма в спб (49)
  • справка о кодировании от алкоголизма (49)
  • кодирование от алкоголизма цены отзывы (49)
  • кодирование от алкоголизма уколом (49)
  • как происходит кодирование от алкоголизма (49)
  • лазерное кодирование от алкоголизма (49)
  • кодирование от алкоголизма довженко (49)
  • методы кодирования от алкоголизма (49)
  • адреса кодирования от алкоголизма (49)
  • кодирование от алкоголизма отзывы (49)
  • кодирование от алкоголизма цены (49)
  • кодирование от алкоголизма (49)

—Поиск по дневнику

—Подписка по e-mail

—Статистика

В завершение

К звукоснимателю можно придумать хорошее крепление, сделать все более качественно. Но цель у меня была простая — поиграться и попробовать, изготовить быстро и чтобы функционировало, цель достигнута на все 100%. Звукосниматель оказался достаточно чувствительным, причем никаких явных помех и фона нет.

Сигнал от гитары я подаю на микрофонный вход звуковой карты компьютера, а там уже пускаю через программу Guitar Rig 4 для получения различных связок эффектов — от простого усиления и эхо до глубокого Distortion. ))

Желаю всем творческих и музыкальных успехов!

Вечный фонарик из пьезоэлемента зажигалки

Хотя сейчас думаю у каждого есть дома фонарик и скорее всего даже не один но порой возникает ситуация когда срочно нужно где-то подсветить, как вдруг оказывается, что то батарейки уже сели сразу во всех фонариках или аккумулятор разряжен. Поэтому самым лучшим аварийным вариантом будет иметь так называемый «вечный» фонарик, который работает без батареек или аккумуляторов , например, как динамо фонарь, фонарик работающий на воде или фонарик Фарадея, последние два мы описывали как можно сделать самому. Сегодня рассмотрим и сделаем ещё один самодельный вечный фонарик из пьезоэлемента зажигалки.

Вечный фонарик из пьезоэлемента зажигалки

Детали для вечного фонарика:

  • Трансформатор от монитора или телевизора для CCFL ламп подсветки дисплея;
  • Зажигалка с пьезоелементом;
  • Конденсатор 68 пФ х 6,3кВ;
  • Конденсатор 1000 мкФ х 35В;
  • Конденсатор 100 нФ х 250В;
  • Резистор 10 кОм;
  • Яркий светодиод белого свечения;
  • Диоды 1N4007 – 4 шт.
Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]