Спасительная прохлада, или теплоотвод для мощных светодиодных матриц

Известно, что продолжительность службы светодиодов напрямую зависит от качества материала, используемого в полупроводнике, а также соотношения тока устройства к количеству выделяемого тепла. Отдача света постепенно понижается, а после того, как она будет составлять половину от изначального значения, срок службы светодиода начнет сокращаться. Продолжительность работы устройств может составлять до 100 000 часов, но только при условии, что на него не воздействуют высокие температуры.

Для охлаждения приборов, выделяющих тепло, в радиоэлектронике применяют такое устройство, как радиатор для светодиодов. Отвод тепла от агрегатов в атмосферу достигается двумя методами.

Первый способ охлаждения светодиодов

Этот метод основан на излучении тепловых волн в атмосферу, или тепловой конвекции. Способ относится к разряду пассивного охлаждения. Часть энергии поступает в атмосферу лучистым инфракрасным потоком, а часть уходит посредством циркуляции нагретого воздуха от радиатора.

Среди техники для светодиодов пассивная охлаждающая схема получила наибольшее распространение. Она не обладает вращающимися механизмами и не требует периодического обслуживания.

К минусам этой системы можно отнести необходимость установки крупного теплоотвода. Вес его достаточно большой, да и цена на него высокая.

Как закрепить светодиод

Существует два основных способа крепления, рассмотрим оба из них.

Первый способ

– это механический. Он заключается в том, чтобы прикрутить светодиод саморезами или другим крепежом к радиатору, для этого нужна специальная подложка типа «звезда» (см. star). К ней припаивается диод, предварительно смазанный термопастой.

На «пузе» у светодиода есть специальный контактный пятачок диаметром как сигарета типа slim. После чего к этой подложке припаиваются питающие провода, и она прикручивается к радиатору. Некоторые светодиоды поступают в продажу уже закреплённые на переходной пластине, как на фото.

Второй способ

– это клеевой. Он пригоден как и для монтажа через пластину, так и без неё. Но метал к металлу крепить не всегда получается, чем приклеить светодиод к радиатору? Для этого нужно приобрести специальный термопроводящий клей. Он может встречаться как в хозяйственной, так и в магазине радиодеталей.

Выглядит результат такого крепления следующим образом.

Изготовление радиаторов

При выборе материала следует руководствоваться следующими правилами:

  • Показатель теплопроводности должен быть не меньше 5-10 Вт. Материалы с более низким показателем не могут передать все тепло, которое принимает воздух.
  • Уровень теплопроводности выше 10 Вт с технической точки зрения будет избыточным, что повлечет за собой ненужные денежные затраты без повышения эффективности устройства.

Для производства радиаторов, как правило, применяют алюминий, медь и керамику. Выпускают приборы на основе пластмассы, рассеивающей тепло.

Светодиодные лампы с радиатором охлаждения: виды радиаторов


Светодиодные лампы с радиатором охлаждения: виды радиаторов
Светодиодные лампы прочно вошли в нашу жизнь, практически полностью вытеснив лампы накаливания и энергосберегающие компактные люминесцентные лампы (КЛЛ). Можно предположить, что все дело в их экономичности, отличных технических характеристиках (таких как световой поток, CRI, угол рассеивания), а также в их продолжительном сроке службы.

Для чего нужен радиатор в светодиодной лампе

На срок службы изделия первоочередное влияние оказывает качество светодиодов, а также драйвер, правильная работа которого напрямую влияет на стабильность диодов.

Однако в процессе эксплуатации светодиодной лампы её поверхность загрязняется, что негативно влияет на отвод производимого тепла. С течением времени появляется проблема перегрева, с которой связано уменьшение светоотдачи диодов вплоть до их выхода из строя.

Чтобы этого избежать, повышают стабильность работы источников света. Для этого в конструкции каждого из них предусмотрен радиатор.

Виды радиаторов

Радиатор – это конструктивный элемент, который служит для отвода и рассеивания тепла от светодиодов.

Светодиодные лампы с радиатором охлаждения

Светодиодные лампы с радиатором охлаждения бывают следующих видов:

  • с алюминиевым радиатором;
  • керамическим;
  • композитным;
  • пластиковым.

Светодиодные лампы с алюминиевым радиатором

Данные лампы относятся к стандарт- или high-классу. Алюминиевым радиатором в таких изделиях может быть как полоска металла, так и конструктивно более сложная алюминиевая база. Отсюда и разделение таких светильников на два вида:

  1. с ребристым радиатором;
  2. с плоским радиатором.

Светодиодные лампы с ребристым алюминиевым радиатором

Наиболее эффективно защищённые лампы, радиатор которых представлен в виде многослойной конструкции с вентиляционными каналами. За их счет увеличивается площадь рассеивания тепла, что существенно увеличивает срок службы светодиодов, а также препятствует их деградации со временем по причине перегрева.

Светодиодные лампы с алюминиевым радиатором

Лампы с плоским радиатором

Плоский радиатор менее эффективен, чем ребристый. Используется такой охлаждающий элемент в основном в лампах небольшой мощности. Часто для более эффективного отвода тепла он имеет вентиляционные каналы, а его поверхность для диэлектризации покрыта слоем специальной краски или лака.

Композитный радиатор

Светодиодные лампы с радиатором охлаждения из композитного материала отличаются в первую очередь демократичной ценой. В таких лампах элемент представляет собой двухслойную конструкцию из алюминиевой полосы, покрытой теплопроводящим пластиком.

По причине своей низкой цены лампы с композитным радиатором являются наиболее широко представленными на рынке в сегменте эконом-класса.

Однако такие радиаторы не могут эффективно отводить тепло, поэтому гарантийный срок службы изделий с ними редко когда превышает 1 год.

Пластиковый радиатор

Самый простой вариант, правильнее назвать его имитацией радиатора. Элемент представляет собой корпус, выполненный из терморассеивающего пластика. Главные отличия таких ламп: низкая цена, короткий гарантийный срок, непродолжительный срок службы (10000-15000 часов). В лампах высокой мощности для повышения теплоотвода пластиковый радиатор выполняют с дополнительными массивными ребрами и вентиляционными отверстиями.

Светодиодные лампы с плстиковым радиатором

Керамический радиатор

Светодиодные лампы с радиатором охлаждения из керамики отличает высокая теплостойкость, а диэлектрические свойства материала позволяют монтировать светодиодные модули прямо на поверхность такого радиатора. Наиболее распространенным видом лампы с керамическим радиатором без рассеивающей колбы является так называемая лампа-кукуруза.

Светодиодные лампы с керамическим радиатором охлаждения

Светодиодные лампы с каким радиатором охлаждения выбрать?

Из всего выше сказанного можно сделать вывод, что качество любой светодиодной лампы зависит в том числе и от качества радиатора, а точнее от материала, из которого тот выполнен.

Наиболее надежными, с продолжительным реальным сроком службы считаются светодиодные лампы с алюминиевым радиатором охлаждения, а также с керамическим (в том случае, если такой источник света не будет иметь рассеивающей колбы).

Пластиковым вариантам можно отдать предпочтение в том случае, если использоваться подобные лампы будут лишь эпизодически и непродолжительное время, например, в кладовках, подсобных помещениях.

Алюминиевые приспособления

Радиатор для светодиодов, пользующийся наибольшей популярностью, выполнен из алюминия. Главным минусом прибора является то, что он состоит из ряда слоев. Это неизбежно вызывает переходные тепловые сопротивления, преодоление которых возможно посредством дополнительных теплопроводных материалов: веществ на клею, изоляционных пластин, материалов для заполнения воздушных промежутков.

Алюминиевый радиатор для светодиодов используется чаще других. Он подвержен прессовке и прекрасно справляется с отводом тепла.

Для активного уровня охлаждения, как правило, требуется плоский лист из алюминия, размер которого не больше, чем размер светильника. Лист обдувается вентилятором.

Подходящей температурой для функционирования светодиода считается показатель 65 °С. Однако чем ниже температура, тем выше уровень КПД устройства и больше его ресурс. Оптимальной температурой поверхности радиатора считается показатель 45 °С, но не выше. Для диода мощностью 1 W надо произвести установку на радиатор из алюминия. Площадь радиатора составляет 30-35 см2. Радиатор светодиода 3 W потребует увеличения площади вдвое и будет составлять 60-70 см2.

В качестве радиатора лучше всего подходит устройство из алюминия как наиболее легкое и относительно недорогое. При расчете прибора для светодиодных матриц берется пропорция 35 см на 1 W.

Для систем охлаждения активного характера площадь радиатора может быть меньше в 10 раз. На светодиод 1 W хватает 3-3,5 см2.

Для примера рассмотрим радиатор «звезда» для светодиодов. Устройство используется для отведения тепла от светодиода и представляет собой небольшой радиатор. Его основу составляет пластина из композитного материала — использован алюминий, отводящий тепло от светодиода, и фольга из меди с контактными площадками. Радиатор монтируют на светодиоды с высоким показателем мощности (1-3 Вт).

Решаем проблему охлаждения

Маломощные светодиоды, например: 3528, 5050 и им подобные отдают тепло за счёт своих контактов, да и мощность у таких экземпляров гораздо меньше. Когда мощность прибора возрастает, появляется вопрос отвода лишнего тепла. Для этого применяют системы пассивного или активного охлаждения.
Пассивное охлаждение – это обычный радиатор, выполненный из меди или алюминия. О преимуществах материалов для охлаждения ходят споры. Достоинством такого типа охлаждение является – отсутствие шума и практически полное отсутствие необходимости его обслуживания.


Установка LED с пассивным охлаждением в точечный светильник

Активная система охлаждения – это способ охлаждения с применением внешней силы для улучшения отвода тепла. В качестве простейшей системы можно рассмотреть связку радиатор + кулер. Преимуществом является то, что такая система может быть значительно компактнее чем пассивная, до 10 раз. Недостатком — шум от кулера и необходимость его смазки.

Радиаторы из пластмассы

Рассеивающие тепло устройства из пластмассы вызывает определенный интерес. И это вполне объяснимо, так как стоимость этого материала ниже цены алюминия, а уровень технологичности выше.

Но уровень теплопроводности обыкновенной пластмассы не выше 0,1-0,2 Вт/(м·К). Достичь приемлемого показателя удается при помощи разных наполнителей. При замене радиатора из алюминия на устройство на основе пластмассы (равной величины) уровень температуры в области подвода температур поднимается на 4-5 %. Исходя из того что показатель теплопроводности теплорассеивающей пластмассы ниже, чем у алюминия (8 Вт/(м·К) против 220-180 Вт/(м·К)), делаем вывод: пластик может составить конкуренцию алюминию.

Как подключить лампу ДНаТ

Вот собранный своими руками компактный щиток, согласно схемы подключения.

Можно конечно все это собрать и в габаритном корпусе светильника, если позволяют размеры.

Очень важно, перед тем как самому собирать такую схему и использовать какие-либо компоненты, обычным мультиметром в режиме замера максимального сопротивления, проверить изоляцию дросселя и конденсатора. Нет ли пробоя на корпус. Нет ли пробоя на корпус

Нет ли пробоя на корпус.

Для подачи и отключения питания 220В используйте двухполюсный вводной автомат.

Для одного светильника мощность до 400Вт вполне сгодится автомат номиналом 5-6А. Кроме коммутационных операций вкл-выкл, он еще будет играть роль защитного аппарата.

Монтируется автоматический выключатель в самом начале схемы. Не забудьте также заземлить корпус всего щитка.

С автомата выходят два нулевых провода. Один из них согласно схемы, пускаете напрямую к лампе, а второй подключаете к соответствующему зажиму, подписанному «N» на пусковом устройстве.

Имейте в виду, что дроссель должен обязательно устанавливаться только в разрыв фазного провода идущего на лампу, а не нулевого.

Иначе можно случайно сжечь изделие, если при работе нулевой провод после балластного дросселя, случайно коротнет. Далее расключаете фазу. Один провод с автомата монтируете на входящий контакт дросселя.

А провод с выходящего контакта подключаете на клемму “В” (Balast) пускорегулирующего изделия.

После чего, средний вывод Lp (Lampa) пускаете на патрон лампочки.

Схемы включения ИЗУ

Рассмотрим схему параллельного запуска ИЗУ. В такой схеме ламповый ток не проходит непосредственно через ИЗУ, что практически исключает любые потери мощности. Схема зажигающего устройства для подобного включения достаточно проста, сами устройства недороги, просты в эксплуатации и достаточно надежны. Однако формируемые зажигающим устройством импульсы высокой частоты в такой схеме оказывают влияние, помимо лампы, также на дроссель, что обуславливает обязательное применение дросселей с повышенной изоляцией, устойчивой к напряжению 2–5 кВ.

Поскольку стандартные дроссели для металлогалогенных и натриевых ламп не поддерживают такую величину напряжения, то параллельная схема включения ИЗУ используется лишь с лампами, зажигающее напряжение которых меньше 2 кВ. В первую очередь к таким лампам относятся металлогалогенные лампы высокой мощности (от 2000 до 3500 Вт).

Конструктивные особенности радиаторов

Многие задаются вопросом: какой радиатор для светодиода лучше?

Существует две группы модификаций:

  • игольчатые;
  • ребристые.

К примеру, радиатор для светодиода 10W представлен ребристым LED-устройством.

Первый вид, как правило, используется для естественного метода охлаждения светодиодов, а второй — для принудительного. При одинаковых показателях габаритов пассивное игольчатое устройство на 70 % превышает эффективность ребристого вида.

Радиаторы для мощных светодиодов обладают игольчатой конструкцией. Они рассчитаны на мощные светодиоды, но это совсем не означает, что ребристые приборы на основе пластин пригодны только для функционирования вместе с вентилятором. В зависимости от геометрических параметров, они используются и для охлаждения пассивного характера.

Радиатор для светодиодов любой конфигурации может обладать квадратной, прямоугольной или круглой формой.

Охлаждение своими руками


Простейшим примером радиатора будет «солнышко», вырезанное из жести или листа алюминия. Такой радиатор может охладить 1-3Вт светодиодов. Скрутив два таких листа между собой через термопасту, можно увеличить площадь теплоотдачи.

Это банальный радиатор из подручных средств, он получается довольно тонким и использовать его для более серьёзных светильников нельзя.


Сделать своими руками радиатор для светодиода на 10W таким образом будет невозможно. Поэтому можно применить для таких мощных источников света радиатор от центрального процессора компьютера.

Если если оставить кулер, активное охлаждение светодиодов позволит использовать и более мощные LED. Такое решение создаст дополнительный шум от вентилятора и потребует дополнительного питания, плюс периодическое ТО кулера.


Площадь радиатора для 10Вт светодиода будет довольно большой – порядка 300см2. Хорошим решением будет использование готовых алюминиевых изделий. В строительном или хозяйственном магазине вы можете приобрести алюминиевый профиль и использовать его для охлаждения мощных светодиодов.

Сделав сборку нужной площади из таких профилей, вы можете получить неплохое охлождение, не забудьте все стыки промазать хотя бы тонким слоем термопасты. Стоит сказать, что есть специальный профиль для охлаждения, который выпускается промышленно самых разнообразных видов.

Если у вас нет возможности сделать радиатор охлаждения светодиодов своими руками вы можете поискать подходящие экземпляры в старой электронной аппаратуре, даже в компьютере. На материнской плате расположены несколько. Они нужны для охлаждения чипсетов и силовых ключей цепей питания. Отличный пример такого решения изображен на фото ниже. Их площадь обычно от 20 до 60см2. Что позволяет охлаждать светодиод мощностью 1-3 Вт.

Еще один интересный вариант изготовления радиатора из листов алюминия. Такой метод позволит набрать практически любую необходимую площадь охлаждения. Смотрим видео:

Как рассчитать площадь радиатора. Методы получения точных показателей параметров устройства

В данном случае за основу берется ряд важных факторов:

  • показатели окружающего воздуха;
  • уровень площади рассеивания;
  • модификация радиатора;
  • особенности материала, из которого сделано теплообменивающее устройство.

Но все эти нюансы нужны для проектировщика, который занимается разработкой теплоотвода.

За основу радиолюбителями, как правило, берутся использованные радиаторы. Все, что требуется, — это знание показателя максимального рассеивания мощности теплообменного устройства.

Первый метод

Подсчет площади проводится по формуле F = а х Сх (T1 – T2), где Ф является тепловым потоком, а S – площадью поверхности радиатора (сумма площадей всех ребер или иголок и подложки в кв. м), T1 — показателем температуры среды, отводящей тепло, а T2 — температуры нагретой поверхности.

Производя подсчет площади, следует обратить внимание и на то, что ребро или же пластина обладает двумя поверхностями для отвода тепла.

Расчет поверхности иглы производится по длине окружности (π х D), умноженной на показатель высоты.

Для поверхностей, не подвергшихся полировке, коэффициентом теплоотдачи является показатель, равный 6-8 Вт/(м2·К).

А зачем он нужен?

Наравне с другими полупроводниковыми приборами светодиод не является идеальным элементом со 100% коэффициентом полезного действия (КПД). Большая часть потребляемой им энергии рассеивается в тепло. Точное значение КПД зависит от типа излучающего диода и технологии его изготовления. Эффективность слаботочных светодиодов составляет 10-15%, а у современных белых мощностью более 1 Вт её значение достигает 30%, а значит, остальные 70% расходуются в тепло. Каким бы ни был светодиод, для стабильной и продолжительной работы ему необходим постоянный отвод тепловой энергии от кристалла, то есть радиатор. В слаботочных led функцию радиатора выполняют выводы (анод и катод). Например, в SMD 2835 вывод анода занимает почти половину нижней части элемента. В мощных светодиодах абсолютная величина рассеиваемой мощности на несколько порядков больше. Поэтому нормально функционировать без дополнительного теплоотвода они не могут. Постоянный перегрев светоизлучающего кристалла в разы снижает срок службы полупроводникового прибора, способствует плавной потере яркости со смещением рабочей длины волны.

Второй метод вычисления

Существует и другая простая формула, котрая получена путем экспериментов.

S = [22 – (M x 1,5)] x W, где S является показателем площади теплообменника,W – подведенной мощностью (Вт), а M – незадействованной мощностью светодиода.

Для ребристого типа радиатора, сделанного на основе алюминия, можно использовать данные, предоставленные инженерами из Тайваня. Данные не обладают точностью, так как указаны в диапазонах с большим показателем разбега. К тому же определение подходит для климатических условий Тайваня. Их можно брать за основу только при проведении предварительных подсчетов.

Вариант 2

Радиатор для светодиодов своими руками можно сделать из фрагмента алюминиевой трубы с прямоугольным сечением.

Нужные материалы:

  • труба размером 30х15х1,5 мм;
  • пресс-шайба диаметр которой составляет 16 мм;
  • термический клей;
  • термическая паста КТП-8;
  • Ш-образный профиль 265;
  • саморезы.

Для оптимизации конвенции просверливаются три отверстия, диаметр которых равен 8 мм, а в профиле — отверстия диаметром 3,8 мм для крепежа посредством саморезов.

Светодиоды приклеивают к трубе — основной части радиатора — при помощи термического клея. В местах, где соединяются детали радиатора, наносят слой термической пасты КТП-8.

Затем приступают к сборке конструкции при помощи саморезов с пресс-шайбой.

Нагрев

Для измерения нагрева светодиодов Philips Z ES прогреваю образцы в течение 60 минут. В отличие от оригинальных автоламп Philips Ultinon, у Smart H7 есть еще гибкий радиатор. Поэтому срок службы у Smart будет выше, чем у настоящих Philips Ultinon, примерно в 2 раза.

Измерение провожу около светодиодов на пластине. Отверстия для установки термодатчика на медной плате уже были. Только надфилем проточил канавку для вывода провода термопары.

Сборка и материалы оказались очень хорошими, термопасты не пожалели, такое редко встречается. Диоды стоят на медной пластине, а не алюминиевой. Теплопроводность меди выше почти в 2 раза, и она гораздо дороже алюминия. Гибкая часть радиатора обжата медью и посажена на теплопроводный клей, хорошо так приклеена. Лепестки обжаты очень плотно, пробовал их разболтать, не получилось.

У дешевых автомобильных ламп лепестки иногда болтаются, соединены с корпусом неплотно или без термопасты. Гибкие лепестки даже выпадывали из автолампочки при попытке их поставить в фару.

По большей части я сторонник пассивной системы охлаждения светодиодных ламп для авто. Пассивное охлаждение более универсально и применимо не только в закрытых фарах ближнего или дальнего света. Пассивное можно ставить в противотуманки (сокращенно ПТФ) и другие незащищенные места. Чем проще охлаждение, тем оно надежней. Автомобильные светодиодные лампы с пассивным радиатором устанавливать конечно сложней, но это решается комплектом дополнительных крышек. Увеличенные резиновые крышки скрывают массивный жесткий или гибкий радиатор, не мешая работать электрокорректору или гидрокорректору угла наклоны головного света.

К охлаждению с вентилятором у меня более высокие требования, потому что гораздо чаще встречаются проблемы с отводом тепла. Обычно внешне такие модели выглядят прилично, а как разберешь, внутри большие проблемы,

Методы крепления светодиодов к радиатору

Светодиоды прикрепляются к устройству при помощи двух методов:

  • механического;
  • приклеивания.

Клеят светодиод термическим клеем. С этой целью на поверхность из металла наносится немного клея, затем на нее сажают светодиод. Для получения хорошего соединения светодиод придавливается грузом до полного высыхания клеящего вещества. Но большинство мастеров предпочитают использовать механический способ.

В настоящее время производятся специальные панели, посредством которых можно в кратчайшие сроки произвести монтаж диода. Некоторые модели предусматривают дополнительные зажимы для вторичной оптики. Монтаж весьма прост. На радиатор устанавливается светодиод, затем на него — панель, которую прикрепляют к основанию при помощи саморезов.

Как закрепить светодиод

Существует два основных способа крепления, рассмотрим оба из них.

Первый способ – это механический. Он заключается в том, чтобы прикрутить светодиод саморезами или другим крепежом к радиатору, для этого нужна специальная подложка типа «звезда» (см. star). К ней припаивается диод, предварительно смазанный термопастой.

На «пузе» у светодиода есть специальный контактный пятачок диаметром как сигарета типа slim. После чего к этой подложке припаиваются питающие провода, и она прикручивается к радиатору. Некоторые светодиоды поступают в продажу уже закреплённые на переходной пластине, как на фото.

Второй способ – это клеевой. Он пригоден как и для монтажа через пластину, так и без неё. Но метал к металлу крепить не всегда получается, чем приклеить светодиод к радиатору? Для этого нужно приобрести специальный термопроводящий клей. Он может встречаться как в хозяйственной, так и в магазине радиодеталей.

Выглядит результат такого крепления следующим образом.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]