10 лучших манипуляторов для 3D печати своими руками


Существует много разных конфигураций роботов-манипуляторов, но большинство из них работают на одних и тех же общих принципах движения. В отличие от механизмов, работающих в декартовой системе координат, таких как, например, 3D принтеры, манипуляторы в большинстве своем используют полярную систему координат для перемещений и имеют рабочую область в форме дуги. Роботы-манипуляторы уникальны тем, что они не ограничены размером занимаемой площади и занимают очень мало места по сравнению с другими машинами с аналогичными функциями.

В робототехнике есть такое определение как степени свободы (DOF). Этот термин используется для обозначения количества вращающихся шарниров или осей на конкретном рычаге, например, рычаг 4DOF может вращаться с помощью четырех отдельных суставов.

Роботы-манипуляторы используются по-разному, но большинство из них способны подбирать и перемещать, в то время как некоторые из них предназначены для работы в паре с ЧПУ станками, лазерной гравировки и даже 3D печати.

Поскольку существуют сотни отличных конструкций и проектов, которые нужно проанализировать при выборе хорошего манипулятора для покупки или 3D печати, мы сузили его до 10 лучших и самых популярных манипуляторов, проекты которых вы можете найти и воспроизвести, используя в том числе возможности своего 3D принтера.

UFactory uArm

UArm, вероятно, является одним из самых универсальных из всех роботов-манипуляторов в этом списке. На текущий момент эта конструкция уже имеет третью релизную версию — uArm Swift и более функциональную Swift Pro.

Этот робот-манипулятор имеет открытый исходный код и полностью совместим с наборами Arduino, Raspberry Pi и Seeed Studio Grove. Он уникален тем, что Swift Pro может выполнять лазерную гравировку и 3D печать — при условии, что он оснащен подходящими головками — и может «учиться» движениям без необходимости в компьютере.

Это манипулятор 4DOF с точностью до 0,2 миллиметра.

Вы можете найти более подробную информацию и узнать, где его купить, на странице продукта UFactory.

Подъемник для кладки газобетонных блоков

За границей, при строительстве частных домов, часто используют краны и разнообразные подъёмники. Так строительство идёт быстрее, а значит, «коробка» обходится дешевле, т.к. выгоднее использовать средства малой механизации, чем нанимать чернорабочих. У нас застройщик надеется сам на себя и часто строит дом «в одну каску». Поэтому остро стоит вопрос, как физически не надорваться, делая кладку стены из газобетонных блоков весом в 35-40 кг.

Интересен вариант необычного самодельного «помощника» пользователя FORUMHOUSE с ником Крестик. Сначала покажем то, что он взял за основу.

Немецкий мини-кран с выдвижной центральной стойкой

Особенность подъёмника — оригинальная складывающаяся «рука-стрела», с помощью которой кран, передвигаясь на колёсах, может дотянуться до двух противоположных стен.

Я самостоятельно строю дом и, чтобы иметь возможность класть газобетонные блоки, построил подъёмник по вышеуказанному образцу. Кран сделал полностью разборным, кроме основания. Максимальную нагрузку на крюке не мерил, но меня (вес 95 кг) он спокойно поднимает.

Технические характеристики подъёмника:

  • ширина – 2200 мм;
  • высота – 4200 мм;
  • вылет стрелы – 4200 мм;
  • грузоподъёмность электрической тали – до 800 кг;
  • полный вес крана с балластом – примерно 650 кг;
  • вес подъёмника без балласта – около 300 кг;
  • максимальная высота подъёма блока для кладки – 3500 мм.

Рабочая высота подъёма блоков регулируется в двух диапазонах. Первый – 1750 мм. Второй – 3.5 м, для чего конструкция поднимается, скользя по опорным «ногам» вверх с помощью гидравлического домкрата с подкладкой проставок из ГБ блоков.

Для изготовления подъёмника пользователю потребовалось:

  • поворотные колёса;
  • профильные трубы для мачты, «ног» и стрелы сечением 12х12 см, 12х6 см, стенка 6 мм;
  • трубы-укосины – 63х3 мм;
  • мощные петли от ворот;
  • поворотный механизм стрелы сделан из стали СТ45 и «205-х» подшипников.

В процессе эксплуатации конструкцию доработали. Например, пользователь проложил кабель для лебёдки в гофротрубе и удлинил кабель пульта управления.

У конструкции есть ряд недостатков, которые я хотел бы исправить. Например, думаю сделать беспроводное управление, заменить петли от ворот на подшипники. Увеличить кол-во «суставов» в стреле при том же вылете. Вместо временного противовеса — мешков с пескобетоном, залить балласт из бетона.

Важный нюанс: чтобы подъёмник мог передвигаться по строительной площадке или, например, по бетонной плите перекрытия второго этажа, нужно поддерживать рабочее место в чистоте, т.к. осколки ГБ, мусор мешают перестановке крана.

Конструкция необычного подъёмника заинтересовала пользователей портала.

С таким подъёмником, думаю, как делают в Германии, нужно делать кладку из блоков крупнее, чем стандартные. Длиной и высотой в 2-3 раза больше от обычного ГБ. Запаса грузоподъёмности у крана хватит, а скорость кладки увеличится в разы.

По словам Крестика, он слышал, что на портале кто-то уже пытался заказать у производителя газосиликата блоки формата 1х0.4х0.6 м. Но оказалось, что это — невыгодно заводу, т.к. нужно перенастраивать линию по выпуску ГБ, а ради небольшого объёма (на обычный частный дом) этого делать не будут.

Мне вот интересно: упростилась ли работа на площадке при использовании крана? Какие работы с ним можно сделать, а какие – нет?

Отпадает необходимость ставить леса при кладке стен из ГБ. Подъёмник можно собрать и разобрать. Бетонные перемычки над окнами я заливал по старинке, из вёдер, т.к. объём небольшой, и проще это сделать с одним помощником.

Общий итог: мини-кран получился удачный, а при некоторых доработках его конструкции подъёмник можно запустить в мелкосерийное производство.

Thor

Эта манипулятор, разработанный производителем Hackaday AngelLM, который имеет полностью открытый исходный код и может использоваться для 3D печати. Это манипулятор 6DOF с максимальной полезной нагрузкой 750 грамм и уникальной конструкцией, обеспечивающей большую гибкость.

Вы можете найти все файлы для печати 3D печати этого робота на странице проекта Thor.

EEZYbotARM MK2

EEZYbotARM MK2 — это эталонный образец манипулятора 4DOF, полностью напечатанный на 3D принтере с отличными инструкциями по сборке. Этот робот-манипулятор выигрывал несколько конкурсов и, вероятно, является одним из самых простых в изготовлении манипуляторов. Также ведется разработка версии MK3.

Вы можете найти полные инструкции по сборке на веб-странице EEZYbotARM.

Roboteurs RBX1

Это еще один замечательный робот-манипулятор, полностью напечатанный на 3D принтере, который обладает удивительной гибкостью и эстетикой. Помимо приобретения компонентов самостоятельно, Roboteurs предлагает полный комплект деталей с проприетарным драйвером шагового двигателя для запуска RBX1. Все, что вам нужно — это Raspberry Pi и 3D принтер. Этот манипулятор представляет собой конструкцию типа 6DOF и отличается прекрасным внешним видом.

Вы можете найти всю спецификацию и комплект деталей на странице продукта Roboteurs.

Проверка сервомоторов

На этом этапе сервы уже должны быть установлены в задней части вашей робо-руки. Для подключения серв к Arduino и источнику питания, я использовал небольшую макетную плату. Подключите каждый позитивный контакт серводвигателя (красный) к одной рельсе макетной платы, а негативный (черный или коричневый) — к другой рельсе.

ВАЖНО! Не забудьте подключить контакт Arduino к рельсе с отрицательным зарядом: помните, что все контакты Земля должны быть соединены между собой. Контакт VCC может подключаться к различным источникам питания, но GND должен быть одинаковым.

Загрузите программу на Arduino (файл с программой прилагается). Убедитесь, что подключение сенсоров, сервомоторов и т.п. Было правильным. Наденьте перчатку и включите Arduino. Серводвигатели должны вращаться в зависимости от того, каким пальцем вы будете двигать. Если сервы двигаются, значит все работает!

Если вы более искушенный пользователь Arduino и знаете как проверить текущие значения с датчиков изгиба, можете настроить диапазон в программе под ваши реалии. Предполагаю, что все сенсоры изгиба примерно одинаковые, но если это не так, калибровка датчиков вам однозначно поможет.

Если сервомоторы отрабатывают неправильно, убедитесь, что вы их правильно подключили (например, когда я работал над этим проектом, я, как обычно, забыл соединить пин GND Arduino с GND источника питания и всех серв. В этом случае работать ничего не будет). Убедитесь, что все отрабатывает перед тем, как двигаться дальше.

LittleArm

LittleArm — модель, разработанная Slant Concepts на Hackaday.io, является самым простым роботом-манипулятором в этом списке. Имея только 3DOF, этот манипулятор может стать отличным введением в программирование Arduino для студентов и открывает захватывающие двери новых технологий для новичков в мире 3D печати и робототехники.

Этот полностью напечатанный на 3D принтере манипулятор очень прост в сборке. Создатели даже разработали приложение с простым интерфейсом для компьютеров, которое можно использовать вместе с этим роботом.

Вы можете найти полную документацию на странице проекта LittleArm.

Устанавливаем сенсоры на перчатке

Можем приступать к установке датчиков и нашей монтажной платы на саму перчатку. Сначала просверлите небольшое отверстие в пластике датчиков. Отверстия сверлятся в местах, где чувствительный элемент закончился. ВАЖНО! Ни в коем случае не сверлите отверстие в чувствительном материале. После этого оденьте перчатку. Сделайте отметки карандашом или ручкой на вершине каждого сустава. Эти места вы будете использовать для крепежа сенсоров. Датчики изгиба крепятся обычной ниткой. Пришейте сенсоры к перчатке. Используйте отверстие, которые вы сделали на концах датчика. В местах, где отмечены суставы сенсоры «прихватываются» нитью поверх. Более детально все это показано на фото ниже. Монтажная плата пришивается к перчатке аналогично сенсорам. Учтите, что для движения пальцев надо оставить определенный запас длины проводников. Это надо учесть при установке нашей монтажной платы и выборе длины коннекторов от нее к датчикам.

3D Printable Robot Arm

Созданный Андреасом Хеллдорфер на Hackaday.io. Это большой манипулятор, полностью напечатанный на 3D принтере, с множеством вариантов применений. Создатель разрабатывал его в течение 4 итераций, прежде чем сделать действительно достойный промышленный образец, который доступен для всех. Благодаря конструкции 6DOF и максимальной полезной нагрузке до 2 кг этот манипулятор действительно может применятся во многих сферах.

Чтобы найти файлы для 3D печати этого манипулятора и полную спецификацию, посетите страницу проекта.

Основные характеристики

При изготовлении самодельной кран-балки лучше ориентироваться на технические параметры моделей заводского изготовления. Эти характеристики рассчитывались квалифицированными специалистами, поэтому оптимально подойдут для многоцелевого применения.

Характеристики различных модификаций могут отличаться, но в целом, это выглядит так:

  • Рабочая зона. Длина пролёта варьируется в пределах 3-28.5 метров. Ориентироваться на этот показатель не стоит: не каждый гараж обладает такой площадью, поэтому длина кранового пути подбирается исходя из фактического размера помещения.
  • Высота подъема. Промышленные подъемники поднимают груз на высоту 6-18 метров. Для частного применения, можно остановиться на минимальном варианте. Например, если речь идет о простом тельфере для трактора или легкового авто, достаточно высоты подъема в 1.5 метра.
  • Напряжение. Электрооборудование работает от трехфазной сети в 380В. Если предполагается установка грузоподъемного устройства с ручным приводом, этот параметр неактуален.
  • Диапазон рабочих температур. Заводские модели корректно работают при температуре -20/+40 градусов. Этот параметр нужно учитывать при выборе комплектующих деталей.

MeArm

MeArm — один из самых популярных манипуляторов и не зря. Он состоит из простых деталей, которые можно вырезать лазером или напечатать на 3D принтере и имеет простую, но надежную конструкцию 4DOF.

Эта конструкция настолько популярна, что его копируют два других из этого списка. Это манипулятор, оснащенный четырьмя сервоприводами и либо Arduino, либо Raspberry Pi. Он доступен в нескольких разных цветах в виде комплекта, или вы можете сделать все детали самостоятельно.

Чтобы найти готовые комплекты для сборки, загляните на страницу продукта MeArm.

Чтобы найти файлы для 3D печати, взгляните на MeArm на Thingiverse.

Сборка конструкции своими руками

Чтобы после первого же применения стрела не деформировалась и не потребовалось разобрать всю конструкцию, к вопросу самостоятельного изготовления нужно подойти максимально ответственно.

Фактически работа подразумевает выполнение 2 этапов.

  • Подготовка прицепа. Для начала придется подготовить сам прицеп. Ведь установить кран непосредственно на платформу, особенно когда пол выполнен из фанеры, не получится. Кран займет полезное пространство и не обеспечит нужную эффективность. Потому лучше делать узел за пределами бортов или грузовой платформы. Подготовив площадку для крана, далее наступит следующий этап;
  • Изготовление крана и его установка. Собрать кран можно из подручных материалов, но лучше использовать качественные компоненты с нужными параметрами прочности и устойчивости к износу в ходе эксплуатации. Об этом расскажу чуть позже.

Теперь по каждому этапу пройдемся отдельно.

Скажу сразу, что это лишь пример, который вы можете использовать в качестве основы или повторять его с абсолютной точностью. У всех разные прицепы и различные возможности, как и задачи, стоящие перед подобной конструкцией.

Подготовка прицепа

Никто не запрещает вам использовать готовые чертежи из сети. Только предварительно убедитесь, что они правильные, выполнены грамотно и соответствуют реальным характеристикам получаемого крана. Плюс не забывайте, что в некоторых случаях правильнее и проще установить лебедку для прицепа , а не монтировать самодельный манипулятор.

Возможно, кому-то потребуется дополнительно люлька, либо стрела увеличенного размера. Все индивидуально, но в качестве примера одну конструкцию описать стоит. Подкрепить полученные знания всегда можно с помощью фото и видео инструкций, представленных в сети.

Перед тем как сделать сам кран, займемся подготовкой автоприцепа. Суть подготовительных мероприятий заключается в следующем:

  • подготовить материалы для изготовления конструкции;
  • сделать выдвижные подставки из профильной трубы и металлических пластин;
  • тем самым автоприцеп будет более устойчивым;
  • на основе профильной трубы выполнить прямоугольную раму для монтажа самого крана;
  • прикрепить ее к перекладине подрамника;
  • внутри одной из труб подставки зафиксировать выдвижную ножку;
  • с помощью листового металла вырезать площадку требуемого размера;
  • приварить к листу металла отрезок трубы;
  • ребрами жесткости дополнительно соединить трубу с площадкой под кран.

Что касается материалов, то профильную трубу лучше брать с сечением около 50×50 мм. Листовой металл не должен быть по толщине менее 5 мм. Отрезок трубы для основания под кран берется в районе 90 мм в диаметре. Длина произвольная, но не менее 300 мм.

Подъемное устройство

Теперь у вас в распоряжении есть прицеп, на котором присутствует специальная подставка и основание для будущего крана-манипулятора. Где именно и с какой стороны делать площадку, решайте сами. Тут есть разные варианты.

Что же касается подъемного устройства, то здесь работа предусматривает выполнение следующих операций:

  • из трубы диаметров около 80 мм делается стойка;
  • с одного конца стойки параллельно фиксируются две металлические пластины;
  • ко второму концу приваривается основание, подготовленное на прицепе;
  • внутри основания можно засыпать шарики от подшипников, смазав их маслом;
  • тем самым стойка будет свободно вращаться во время работы;
  • между пластиками стойки монтируется стрела с помощью болтового соединения;
  • стрелу можно сделать из труб с сечением 60×60 и 50×50 мм;
  • чтобы стрела регулировалась по наклону и вылету, в трубах и пластинах необходимо высверлить отверстия;
  • в них вставляются стороны;
  • к стреле далее вваривается ручная лебедка.

Подобный кран теперь осталось только болтами закрепить на прицепе. Сварным методом соединять манипулятор с прицепом не стоит, поскольку вряд ли сотрудники ГИБДД похвалят вас за выезд на дорогу общего пользования с подобным самодельным творением.

Это лишь пример того, как можно собственными силами превратить обычный прицеп в более функциональное прицепное транспортное средство. Далее выбор за вами.

Делитесь своими мыслями и идеями на этот счет. Если знаете, как усовершенствовать конструкцию, жду ваших комментариев.

Zortrax Robotic Arm

Робот-манипулятор Zortrax с конструкцией 5DOF не является самым прочным для своего размера, с максимальной полезной нагрузкой всего 100 грамм, но он имеет очень впечатляющий дизайн. И это полностью напечатанный на 3D принтере манипулятор, что делает его достойным упоминания в текущем списке. Его уникальность состоит в том, что только три оси приводятся в действие, а остальные устанавливаются вручную.

Этот манипулятор в первую очередь нашел свое применения для подачи набора сменных головок инструментов.

Чтобы найти полный список файлов деталей, в том числе и для 3D печати, посетите страницу проекта.

Недорогой мини-подъёмник

Практика показывает, что не всегда при строительстве частного дома нужен настоящий кран. Зачастую застройщик может обойтись «малой кровью» и смастерить небольшой подъёмник на основе тельфера с электрическим приводом.

Моя конструкция попроще, чем у авторов выше, но меня она вполне устраивает. Купил тельфер грузоподъёмностью 300 кг без блока и 600 кг с блоком. Испытания показали, что устройство может поднять груз весом в 250-270 кг, потом срабатывала защита двигателя. За строительный сезон я с его помощью поднял около 40 паллетов со строительными блоками, 6-ти метровый брус для мауэрлата, стропила, раствор для кладки и бетон для армопояса.

Подъёмник, опять же из экономии, сделан из б/у труб, уголка и швеллера.

Вся ржавчина очищена «болгаркой», а трубы пролиты отработкой и затем покрашены краской с восстановителем ржавчины.

Чтобы иметь возможность собрать подъёмник на перекрытии второго этажа, все узлы (там, где не нужна сварка) сделаны разборными — на болтовых соединениях.

На стойку на хомутах установлен тельфер.

На пульт управления, на случай дождя, надевается пластиковая бутылка с отрезанным донцем.

Тельфер закрывает козырёк из б/у кровельного железа.

При подъёме поддона под него подкладываются две доски, и на них опускается поддон.

Вся конструкция фиксируется к полу струбцинами.

Чертёж с размерами подъёмника.

Это темы, где подробно рассказывается, как сделать подъёмник для газобетона, и приведены десятки вариантов мини-кранов, от простых до самых сложных конструкций.

BCN3D Moveo

BCN3D Moveo — это впечатляющий робот-манипулятор 4DOF, управляемый Arduino. Он полностью напечатан на 3D принтере, имеет открытый исходный код и был хорошо протестирован в качестве макета для образовательных целей и уже активно используется в образовательных учреждениях.

Обладая открытым исходным кодом, этот манипулятор не ограничивается предполагаемым использованием и, как таковой, может быть модифицирован для выполнения всех видов задач и может стать как преданным домашним подмастерьем так и использоваться в промышленных масштабах.

Для получения дополнительной информации посетите веб-страницу BCN3D Moveo.

Монтаж крановой установки

  1. Подрамник можно сварить из наружного (18 мм) и внутреннего (16 мм) швеллеров. Перед этим планки согните так, чтобы они повторяли форму рамы. Меньшую рейку вставьте в больший швеллер, они должны образовывать прямоугольник.
    Затем сварите конструкцию по всей длине. Длина подрамника – 70-980 см под стрелу крана + размер кузова. Отрежьте нужное после фиксации кузова. Так вы сможете регулировать его положение.
  2. С помощью стремянок прикрепите к раме подготовленные швеллера. Между ними и базой положите пожарный шланг. Он нужен, чтобы выровнять плоскости планок и рамы. Чтобы подрамник под кран был цельным, сварите швеллера обрезком уголка. Приварите его так над поперечиной базы так, чтобы потом прикрутить к ней болтом швеллер.
  3. . В его комплектации имеются специальные стремянки.
    С их помощью и закрепите кран. Обязательно вденьте в стремянки особые распорки.
  4. Изготовить распорки можно следующим образом. Возьмите отрезок трубы, имеющей диаметр чуть больше сечения стремянки. Длина трубы должна составлять половину высоты рамы. Отрезаем прямоугольный кусок пластины толщиной 7-10 мм. Меньшая сторона отрезка должна иметь размер 7-9 см, большая – плотно заходить по высоте внутрь рамы. Приварите трубу к пластине посередине. Далее сильно затяните стремянки.
  5. Чтобы манипулятор не перемещался вдоль базы, перпендикулярно сзади и спереди приварите к ее подрамнику уголки размером 4×4 либо 5×5 см.
  6. Теперь можно устанавливать на газель кузов. При этом оставьте зазор в 15-20 сантиметров между кузовов и автокраном. Кузовные поперечины зафиксируйте болтами.
  7. Ваш кран установлен. Осталось лишь подсоединить гидравлический насос, при помощи которого будет функционировать манипулятор.

Сначала будут затронуты общие вопросы, потом технические характеристики результата, детали, а под конец и сам процесс сборки.

OWI Robotic Arm Edge

Еще одна конструкция 4DOF, OWI Robotic Arm Edge — это простой манипулятор, предназначенный для образовательных целей. Он доступен только в виде комплекта.

При питании от двигателей постоянного тока без энкодеров точность ограничена, что делает этот манипулятор более подходящим для использования в качестве игрушки. Мы включили его в этот список, потому что это фантастический комплект для студентов, интересующихся робототехникой и технологиями, и он может стать отличной «настольной игрушкой» во время скучных обеденных перерывов. Его также можно значительно модифицировать, чтобы он служил базовой платформой для проектов Arduino и других DIY разработок.

Вы можете приобрести его на сайте OWI, ну или Amazon, Aliexpress тоже к вашим услугам.

Как сделать и установить самому

Осуществить монтаж автокрана можно самостоятельно. Он устанавливается на транспортное средство. Для этого нужно снять кузов с шасси, чтобы поменять подрамник, т.к. заводская конструкция слаба и может треснуть. Подрамник надо сделать своими руками потому, что прикреплять крановую установку напрямую к раме запрещено.

Его можно сварить из наружного (18 мм) и внутреннего швеллеров. Планки сгибаются так, чтобы они повторяли форму рамы. Меньшая рейка вставляется в больший швеллер, чтобы образовался прямоугольник. К сваренной раме крепятся готовые швеллера. Между ними и базой ложится пожарный шланг для выравнивания плоскости планок и рамы.

Устанавливается на подрамник кран, в состав которого входят:

  • балка;
  • стрела;
  • опорные стойки;
  • специальные стремянки.

С помощью специальных стремянок закрепляется установка. Необходимо в стремянки вдеть распорки, изготовить которые можно так:

  1. Отрезок трубы диаметром немного больше сечения стремянки и длиной в половину высоты рамы приваривается к пластине, толщина которой 7-10 мм. Меньшая сторона прямоугольной пластины — 7-9 см, большая должна плотно заходить внутрь рамы.
  2. Потом стремянки сильно затянуть.

Чтобы силовая установка не перемещалась, необходимо приварить к подрамнику базы уголки.

После установки кузова нужно оставить зазор 15-20 см между кузовом и автокраном. Еще надо подсоединить гидравлический насос для функционирования манипулятора.

Возможна установка крана также и на трактор. Например, на Беларус 80.1 можно установить ИНМАН ИМ-16.

Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]