Анемометр своими руками из вентилятора. Как сделать самодельный анемометр (измеритель скорости ветра)


Велокомпьютер Узел вращения собран. Теперь необходимо подумать об установке датчика вращения и о креплении узла. В качестве датчика оптимально применить геркон, срабатывающий от магнита, закрепленного на вращающемся узле. Частоту импульсов вращения можно преобразовать в оценку скорости ветра при помощи аналоговых или цифровых схем. Но можно пойти более простым путём – использовать велокомпьютер.

Что нужно делать, чтобы получился самодельный анемометр

1. Иголкой проделай в теннисном мяче два крошечных отверстия одно напротив другого. Проще всего это сделать, нагрев кончик иглы на огне.

2. Продень швейную нитку или рыболовную леску сквозь мячик, оставив с одной стороны, примерно сорок пять сантиметров. Крепко привяжи ее и отрежь излишнюю длину.

3. Привяжи второй конец лески к палочке и обмотай ее ниткой, пока расстояние между палочкой и верхом мяча не достигнет тридцать сантиметров.

4. С помощью клейкой ленты прикрепи палочку к транспортиру. Нитка должна свисать с его наружной стороны из центральной точки.

5. Чтобы измерить скорость ветра, расположи транспортир в направлении ветра. Держи его за углы как можно дальше от себя. Нитка не должна касаться транспортира. При нулевой скорости ветра нитка будет висеть прямо вниз вдоль отметки девяносто градусов.

Мы с вами провели очередной опыт и на этот раз измерили скорость ветра, которая постоянна в регионе, где вы проживаете. Проводить различные опыты и эксперименты очень интересно, увлекательно и познавательно. Особенно для таких любознательных мальчиков и девочек, как вы.

Для изготовления прибора, который измеряет скорость воздушного потока, потребуются подручные средства. К примеру, в качестве лопастей анемометра можно использовать половинки пластиковых пасхальных яиц. Также обязательно потребуется компактный бесщеточный двигатель на постоянных магнитах.

Главное, чтобы сопротивление подшипников на валу моторчика было минимальным. Такое требование обусловлено тем, что ветер может быть совсем слабым, и тогда вал двигателя просто не будет проворачиваться. Для создания анемометра сгодится двигатель от старого жесткого диска.

Главная трудность при сборке анемометра заключается в том, чтобы сделать сбалансированный ротор. Двигатель потребуется установить на массивное основание, а на его ротор насадить диск из толстого пластика. Затем из пластиковых яиц нужно аккуратно вырезать три одинаковые полусферы.

Балансировку рекомендуется проводить в помещении, где полностью отсутствуют всякие движения ветра. Ось анемометра должна находиться в горизонтальном положении. Подгонку веса обычно выполняют с помощью надфилей. Смысл в том, чтобы ротор останавливался в любом положении, а не в одном и том же.

Основные виды и варианты использования анемометра

Наиболее распространенные модели анемометра – это:

  • Ручная модель с крыльчаткой, или так называемый лопастной анемометр. Его принцип действия напоминает работу вентилятора, что дало устройству еще одно название – вентиляционный анемометр. Попадая на широкую площадь поверхности лопастей, воздушная масса меняет интенсивность их вращения и позволяет легко рассчитать скорость ветра. От крыльчатки с помощью зубчатого колесного устройства запускается счетный механизм, отмечающий количество оборотов лопастей за единицу времени. Остается только вычислить скорость, которая будет равна произведению длины окружности траектории лопастей и количества оборотов. В числе главного преимущества данной модели – возможность определить не только скорость, но и направление ветра. Область применения лопастного анемометра – измерение параметров воздушных потоков в системах вентиляции и трубопроводах.
  • Чашечный анемометр. Первая модель, сконструированная человеком для измерения скорости ветра. Лопасти устройства напоминают небольшие чашки, последовательно размещенные на концах металлической конструкции и направленные в одну сторону. Принцип работы чашечного анемометра аналогичен действию лопастной модели. Счетчик, «зашитый» в пластиковый корпус, точно определяет количество полных оборотов лопастей за единицу времени. Такой анемометр можно легко сделать своими руками.
  • Термоанемометр – выполняет сразу две функции: определяет скорость и температуру воздушных масс. Принцип работы базируется на законах акустики: прибор улавливает звук, определяет его скорость и рассчитывает скорость ветра, одновременно отмечая его температуру. Электронная «начинка» гарантирует точность измерений и оперативную корректировку данных по мере изменения интенсивности перемещения воздушных масс. Термоанемометр находит широкое применение в ходе лабораторных исследований и контрольных замеров микроклиматических условий на рабочем месте в крупных промышленных цехах.

Принцип действия анемометров всех перечисленных моделей практически одинаков. Закрепленное на высоком шесте устройство поднимают как можно выше и устанавливают в направлении, позволяющем точно уловить движение воздушных масс. Механические анемометры контролируют по поверочному устройству, входящему в комплект поставки. На индукционных моделях показания, выраженные в метрах в секунду, отображаются на встроенном циферблате.

Термоанемометр

Принцип работы термоанемометра такой же, как и у всех акустических приборов – он измеряет скорость звука, а затем на основании этих данных передает информацию о скорости ветра. Данным прибор является электронным и используется чаще двух первых, к тому же он, работая по принципу акустического термодатчика, показывает температуру воздуха. Это ультразвуковой анемометр и его конструкция достаточно сложна. Поэтому его применяют для контроля микроклимата на рабочих местах в различных промышленных отраслях. В продаже существует много разновидностей портативных цифровых термоанемометров – анемометр тесто и проч.

Кроме трех вышеописанных, выпускается так называемый анемометр ручной индукционный «АРИ-49». В него вмонтирован электрический счетчик (рисунок «в»).

«чувствительный» анемометр

Технические характеристики: Диапазон измерения от 0.5 м/с до 3.5 м/с. Точность 0.5 м/с. Интервал обновления 2-5 сек.

Вырезать прямоугольник размером 3×2 дюйма (7.6×5.1 см).

Сделать разметку на три прямоугольника шириной 1 дюйм (2.53 см).

Очень важно использовать винтик со шлицем Pozidriv (PZ). Потому что в таком шлице игла не задевает боковых стенок. Длинна винта должна быть наименьшей, чтобы магнит находился как можно ниже. На фото используется винт 2×6 мм.

После закручивания винта, «крылья» аккуратно разводятся и крыльчатки придается нужная форма.

Чтобы магнит хорошо держался на винте, нужно прикрутить еще одну гайку. Но не закручивать её.

Из-за прикрепления неодимового магнита (размером 4x4x4 мм), поднимается центр тяжести крыльчатки и она становится нестабильной на игле. Чтобы опустить цент тяжести, к ВНУТРЕННЕЙ части «крыльев» нужно приклеить грузики (используются шайбы для винта 4 мм).

Крыльчатка может крутится не только на шиле, но и на ОЧЕНЬ ХОРОШО заточенных карандашах или на швейной игле прикрепленной к карандашу. На швейной игле крыльчатка крутится лучше всего, однако такой вариант требует большой осторожности и КАТЕГОРИЧЕСКИ НЕ ПОДХОДИТ ДЛЯ ДЕТЕЙ.

Про анемометры: Шкала Бофорта — как определяется баллы ветра и волн в море, баллы при шторме

Зависимость частоты вращения от скорости ветра (на механическом карандаше 0.5 мм): 1.5 Hz — 1.4 m/s 4 Hz — 2.85 m/s 6 Hz — 3.4 m/s

Анемометр своими руками: самая простая схема

Анемометр – прибор для измерения скорости ветра. Классический чашечный анемометр представляет собой чисто механический прибор, способный измерять скорость ветра в диапазоне от 2 до 20 м/с. Анемометр просто подсчитывает количество оборотов крыльчатки.

Для определения скорости ветра надо отмерить количество оборотов за некоторый промежуток времени, например 30 с, а затем рассчитать количество делений которые проходит стрелка анемометра за 1 с. После этого для определения скорости ветра следует воспользоваться графиком.

Сконструировать его аналог проще всего на основе маломощного электромотора, например ДМ-03-3АМ 3 91, который выступает в роли генератора. Четырехлопастная крыльчатка анемометра взята готовая, приобретена на Aliexpress примерно за 1 доллар.

Диаметр крыльчатки 10 см, а высота 6 см.

Электромотор располагается в корпусе, сделанном из емкости для холодной сварки, в крышке которой прорезано отверстие для вала электродвигателя и ведущих от двигателя проводов.

К электродвигателю подключен диодный мост VD1 собранный на диодах Шоттки 1N5817. На выходе диодного моста подключен электролитический конденсатор C1 1000 мкФ х 16 В.

Монтаж

Устанавливаем устройство на высокий шест на крышу дома. Рассчитываем, что и в какой последовательности мы будем делать, готовим материалы и инструменты. Модно сделать наметку без устройства, а после его установить. Проводим кабель в дом и включаем прибор. Как он работает можно посмотреть в видео материале.

​Таким образом, мы знаем, как сделать анемометр своими руками и что для этого нужно. Неважно, для чего прибор служит – для вентиляции, измерения скорости или температуры. Неважно, каким он является – стационарным, миниатюрным или индукционным. Одно можно сказать точно – он приносит людям пользу.

Видео работы

Результаты работы за зиму

с-сть — часов за зиму 0 м/с — 511,0 1 м/с — 475,0 2 м/с — 386,5 3 м/с — 321,2 4 м/с — 219,0 5 м/с — 131,5 6 м/с — 63,3 7 м/с — 32,5 8 м/с — 15,4 9 м/с — 9,1 10 м/с — 5,0 11 м/с — 3,5 12 м/с — 2,2 13 м/с — 1,3 14 м/с — 0,8 15 м/с — 0,5 16 м/с — 0,5 17 м/с — 0,2 18 м/с — 0,0 19 м/с — 0,1

По результатам за две зимы я увидел что ветры у меня не сильные и ветряк будет не эффективен, поэтому сделал маленький с лопастями по 50см. мощностью в пику 150 Вт. Сделал просто, чтобы хотя бы одна экономная лампочка светила когда свет пропадет.

Теперь немного о Arduino.

Нашел в Интернете схему работы мышки, она наглядно иллюстрирует как работает моя система.

Отталкиваясь от схемы мышки я сделал следующую схемку.

Импульсы поступают с фототранзистора на Arduino, а он воспринимает их как нажатия кнопки.

Алгоритм работы программы таков: Считаем сколько нажатий кнопки произошло за одну секунду вот и имеем частоту вращения. Для того чтобы эту частоту перевести в м/с. еще когда я делал на Атмел я сделал алгоритм расчета частоты в м / с. Выглядел он так:

int ob_per_sec=0; // Переменная в которую попадает частота оборотов в секунду.

int speed_wind=0; // Сюда будет попадать значение после пересчета частоты в м/с.

int speed_wind_max=0; // Сюда попадает максимальное значение показаний ветра м/с.

int speed_wind_2=0; // К-во секунд с начала работы программы со скоростью ветра 2 м/с.

int speed_wind_3=0; // К-во секунд с начала работы программы со скоростью ветра 3 м/с.

int speed_wind_4=0; // К-во секунд с начала работы программы со скоростью ветра 4 м/с.

int speed_wind_5=0; // К-во секунд с начала работы программы со скоростью ветра 5 м/с.

…………………………………………………………..

int speed_wind_22=0; // К-во секунд с начала работы программы со скоростью ветра 22 м/с.

if (ob_per_sec >0 && ob_per_sec<4) { speed_wind=2; speed_wind_2 ;}

if (ob_per_sec >4 && ob_per_sec<7) { speed_wind=3; speed_wind_3 ; }

if (ob_per_sec >7 && ob_per_sec<11) { speed_wind=4; speed_wind_4 ; }

if (ob_per_sec >11 && ob_per_sec<15) { speed_wind=5; speed_wind_5 ; }

if (ob_per_sec >15 && ob_per_sec<18) { speed_wind=6; speed_wind_6 ; }

if (ob_per_sec >18 && ob_per_sec<23) { speed_wind=7; speed_wind_7 ; }

if (ob_per_sec >23 && ob_per_sec<27) { speed_wind=8; speed_wind_8 ; }

if (ob_per_sec >27 && ob_per_sec<30) { speed_wind=9; speed_wind_9 ; }

…………………………………………………………..

if (ob_per_sec >60 && ob_per_sec<67) { speed_wind=22; speed_wind_22 ; }

if (speed_wind> speed_wind_max){ speed_wind_max = speed_wind ;}// проверяем и перезаписываем, если максимальное значение больше чем предыдущее записанное.

И выводим на экран значение.

speed_wind

speed_wind_max

При необходимости можно затем просмотреть сколько минут дул ветер с определенной скоростью, для этого нужно на экран вывести переменную (с необходимым индексом скорости) speed_wind_№ (но разделить ее на 60, чтобы получились минуты.).

Я у себя в программе сделал так: при нажатии определенной кнопки поочередно выводятся все переменные, от speed_wind_1 до speed_wind_22.

Первая версия

Сказано — сделано, причем основательно.

Из обрезков полипропиленовых труб сварил крестовину. Все датчики отпаял и удлинил проводами, которые проложил внутри труб. Расстояние между датчиками получилось 70 см.

Код программы такой.

Два последних числа дают искомую горизонтальную скорость и направление ветра. Направление рассчитывается в виде азимута к направлению на север и дается в градусах. Вращение по часовой стрелке.

Увы, результаты меня разочаровали.

При усреднении в 25 измерений, показания в спокойном воздухе прыгают в среднем до 1.5 м/с, при этом измерения выдаются примерно раз в сек. Если усреднить в 10 раз больше показаний ситуация улучшается, но кардинально проблему не решает. К тому же судя по графику скоростей в двух осях, одна пара датчиков фонит существенно больше другой. Скорее всего дело в проводах, которыми я удлинил датчики. Придется переделывать.

Дополнение

Не нагруженый ничем винт анемометра резко реагирует на каждый порыв и изменение скорости ветра. А нагруженый винт этого ветрогенератора все-таки запаздывает в реакциях, и из-за этого не синхронные данные в показаниях. Сегодня ветер 3-7 м/с, анемометр правда ловил пару порывов до 10м/с, но они длились менее секунды и ветрогенератор просто не упевал на них реагировать.

Спустя некоторое время наблюдений нарисовались некоторые средние значения силы тока от ветрогенератора при определенном ветре. Стартует винт с 3,5-4 м/с, зарядка 0.5А на 4м/с, 1А на 5м/с, 2,5А на 6м/с, 4А на 7м/с, 5А на 8м/с. Эти данные усредненные, так-как амперметр аналоговый стот, и я могу ошибаться до 0.5А в показаниях силы тока от ветрогенератора.

Источник

Как сделать анемометр на базе arduino


Автор этой самоделки однажды столкнулся с вопросом, как можно определить, есть ли ветер в том месте, где он живет. Такой вопрос возник из-за того, что он хотел поставить ветряк для генерации электричества. С помощью этого хитроумного приспособления можно сделать замеры, как часто бывает ветер, с какой средней скоростью он дует и так далее. В качество основы для сбора и обработки информации лежит плата Arduino.

Материалы и инструменты для изготовления анемометра: — кусок квадратной трубы; — болгарка; — сварка; — подшипник; — развертка; — гвозди; — краска; — светодиодиодно-фототранзисторный датчик (можно вытащить из принтера); — схема Arduino; — минимальный набор инструмента.

Про анемометры: АНЕМОМЕТР • Большая российская энциклопедия — электронная версия


Процесс изготовления:

Шаг первый. Изготавливаем датчик анемометра

Для изготовления датчика нужно взять кусок квадратной трубы и затем в ней вырезать окошко, через него потом будет происходить установка начинки. Внутри этой трубы нужно приварить металлическую пластину, она будет выступать в качестве держателя подшипника. Потом приваривается еще одна пластина для фиксирования нижнего подшипника.

Верх автор решил сделать в виде скатной крыше. Для этого берется четыре треугольника, сперва прихватывается сваркой, а затем хорошо проваривается.


Далее заготовка зажимается в тиски и диаметром сверла на 0.5 мм меньше, чем диаметр подшипника в нижней крышке и середине сверлится отверстие. Оба они нужны для подшипников. Чтобы подшипники встали на места с натяжкой, размер отверстий подгоняется разверткой. После того как подшипники были установлены, в них был вставлен гвоздь 100-ка. В середине окошка на него надевается пластмассовая шайба с четырьмя прорезями. Снизу гвоздя была нарезана резьба и затем на эту ось была накручена крыльчатка.

Шаг второй. Процесс изготовления крыльчатки

Чтобы изготовить крыльчатку нужно взять гайку и приварить к ней электродом на 2мм три гвоздя. Концы гвоздей обрезаются, и на них нарезается резьба. Затем на концы надеваются половинки от мячика.

В качестве держателя к корпусу был приварен шестигранный пруток из нержавеющей стали. А чтобы корпус не ржавел, он был покрыт белой эмалью.


Чтобы датчик мог считывать информацию, нужна шайба с прорезями. Автор достал ее из старой шариковой компьютерной мышки. Когда прорезь проходит перед светодиодно-фототранзисторным датчиком, он посылает сигнал электронике.

Что касается лопастей крыльчатки, то они сперва были изготовлены из теннисных мячиков. При таком размере лопастей крыльчатка заводится при ветре от 5 м/с. Чтобы сделать крыльчатку чувствительнее, были приобретены мячики диметром 55 мм, в таком случае крыльчатка начинает крутится уже при м/с. При этом измерение ведется до 22 м/с.

Шаг третий. Электронная часть

В качестве электронной схемы автор сперва использовал самодельную ЛУТ схему с добавлением зеленой макси из Китая. Но система не могла показывать скорость ветра в метрах/секунду. Она лишь отображала количество оборотов.

На данный момент идет сборка схемы на Arduino. Принцип работы анемометра автора точно такой, как и компьютерной мышки. Нужно теперь лишь соединить две схемы.

Было решено передать импульсы с фототранзистора на Arduino, при этом схема стала воспринимать такие сигналы как нажатия на кнопку. Чтобы получить скорость ветра, нужно просто посчитать, сколько идет нажатий на кнопку в течение определенного времени, скажем, в секунду.


Вот и все, теперь анемометр можно считать готовым. При необходимости в код можно добавить функцию, которая бы подсчитывала, сколько времени ветер дул с какой-то определенной скоростью. Такая самоделка будет отличным дополнением для тех, кто собирается установить ветряк или пристально следит за погодой.

anemometr.rar [9.54 Kb] (скачиваний: 1118)

Самые популярные модели

На рынке сейчас представлено большое разнообразие моделей чашечных анемометров с совершенно разной ценовой политикой как иностранного происхождения, так и отечественного. Также существуют достаточно много сайтов, блогов, видео-уроков и примеров для того, чтобы сделать ручной чашечный анемометр собственными силами.

Но, несмотря на широкий выбор и возможность использовать самодельные приборы, выделяют несколько моделей, которые очень часто встречаются в различных практиках для измерения скоростей воздушных потоков и других дополнительных задач.

Модели, которые за счёт своих функциональных возможностей и удобств в эксплуатации, завоевали высокую популярность у потребителей:

  • Анемометр РСЕ-А 420:

Чаще всего встречается в агро-сфере и в спорте. Устройство устойчиво к попаданию воды на дисплей. Единицы измерения: м/с, км/ч, фут/мин, узлы и миль/ч. Отображает текущее, минимальное или максимальное значения.

Автоматическое отключение устройства позволяет сохранять заряд батарей. Функция сохранения последних 100 измерений. Степень защиты: IP65. Производство: Германия. Гарантия: 1 год.

  • Анемометр Skywatch METEOS:

Прибор измеряет текущую скорость ветра, максимальное и минимальное значение. Кроме того, присутствуют датчики измерения температур окружающей среды и охлаждения воздушного потока. Единицы измерения — м/с, км/ч, футы/сек, мили/ч, узлы, бофорты.

Измеряет среднее значение за промежуток времени от 3 секунд до суток. Автоматическое отключение дисплея – 5 секунд. Степень зашиты IP67, что допускает кратковременное нахождение под водой на уровне 1 м, и делает его особо популярным в области водного спорта. Также часто используют в промышленности (в шахтах, дымоходах). Производство: Швейцария. Гарантия: 1 год.

  • Анемометр AM-4836C:

Многозадачный инструмент, так как проводит измерение основной характеристики (скорости ветра), температуры воздуха, а также направление потока, что возможно благодаря флюгерному директору, который входит в комплект к данному прибору. Единицы измерения: м/с, км/ч, миль/ч, º C, CFM, CMM.

Есть дополнительная функция расчета объемного расхода воздуха. Дисплей с подсветкой и автоматическим отключением. Предназначен для метеорологических и навигационных измерений; широко используется в промышленности (шахты, вентиляционные каналы, отопления и холодильные установки). Производство: Китай. Гарантия: уточнять при покупке.

Анемометр чашечный – необходимый прибор, который применяется во многих областях. Несмотря на внушительный «возраст» идеи механизма и его принципа, устройство с каждым поколением модифицируется, «наращивая» в своём арсенале дополнительные возможности.

Не трудно предположить, что в будущем инструмент будет также существовать, а вот какие дополнительные возможности будут включены – вопрос остаётся открытым.

Как сделать самодельный анемометр (измеритель скорости ветра)

Как сделать самодельный анемометр (измеритель скорости ветра)

Появилась задача собрать для одного проекта анемометр, чтобы снимать данные можно было на компьютере по интерфейсу USB. В статье речь пойдет больше о самом анемометре, чем о системе обработки данных с него:

1. Компоненты Итак, для изготовления изделия понадобились следующие компоненты: Шариковая мышь Mitsumi — 1 шт. Мячик для пинг-понга — 2 шт. Кусок оргстекла подходящего размера Медная проволока сечением 2,5 мм2 — 3 см Стержень от шариковой ручки — 1 шт. Палочка от конфеты чупа-чупс — 1 шт. Клипса для кабеля — 1 шт. Полый латунный бочонок 1 шт.

2. Изготовление крыльчатки

К латунному бочонку были припаяны 3 куска медной проволоки длиной 1 см каждый под углом 120 градусов. В отверстие бочонка я припаял стойку из китайского плеера с резьбой на конце. Трубочку от конфеты разрезал на 3 части длиной около 2 см. Разрезал пополам 2 шарика и с помощью мелких шурупов из того же плеера и полистирольного клея (клеевым пистолетом) прикрепил половинки шарика к трубочкам от чупа-чупса. Трубочки с половинками шарика надел на припаянные куски проволоки, сверху все закрепил клеем.

3. Изготовление основной части


Несущим элементом анемометра является металлический стержень от шариковой ручки. В нижнюю часть стержня (куда вставлялась пробка) я вставил диск от мышки (энкодер). В конструкции самой мышки нижняя часть энкодера упиралась в корпус мышки образуя точечный подшипник, там была смазка, поэтому энкодер легко крутился. Но нужно было зафиксировать верхнюю часть стержня, для этого я подобрал подходящий кусок пластика с отверстием точно по диаметру стержня (такой кусок был вырезан из системы выдвигания каретки CD-ROMa). Оставалось решить проблему с тем, чтобы стержень с энкодером не выпадал из точечного подшипника, поэтому на стержне непосредственно перед удерживающим элементом я напаял несколько капель припоя. Таким образом, стержень свободно крутился в удерживающей конструкции, но не выпадал из подшипника. Причина, по которой была выбрана схема с энкодером, следующая: все статьи о самодельных анемометрах в Интернете описывали их изготовление на базе двигателя постоянного тока от плеера, CD-ROMa или еще какого изделия. Проблема с такими устройствами во первых в их калибровке и малой точности при малой скорости ветра, а во вторых — в нелинейной характеристике скорости ветра по отношению к выходному напряжению, т.е. для передачи информации на компьютер есть определенные проблемы, нужно просчитывать закон изменения напряжения или тока от скорости ветра. При использовании энкодера такой проблемы нет, так как зависимость получается линейной. Точность высочайшая, так как энкодер дает около 50 импульсов на один оборот оси анемометра, но несколько усложняется схема преобразователя, в котором стоит микроконтроллер, считающий количество импульсов в секунду на одном из портов и выдающий это значение в порт USB.

4. Испытания и калибровка Для калибровки был использован лабораторный анемометр:


Весь процесс наглядно виден на роликах:

Спасибо за внимание.

Калибровка прибора

Самодельный прибор обязательно должен быть откалиброван. Для калибровки лучше всего использовать автомобиль. Но понадобится какая-то мачта, чтобы не попал в зону возмущенного воздуха, создаваемого автомобилем. В противном случае показания будут сильно искажены.

Про анемометры: Магнитные измерения

Калибровку следует проводить только в безветренный день. Тогда процесс не затянется. Если же будет дуть ветер, придется долго ездить по дороге и вычислять средние значения скорости ветра. Нужно учитывать, что скорость спидометра измеряется в км/ч, а скорость ветра в м/с. Соотношение между ними – 3,6. Это значит, что показания спидометра потребуется разделить на это число.

Некоторые люди в процессе калибровки используют диктофон. Можно просто надиктовать показания спидометра и анемометра на электронное устройство. В вы сможете создать новую шкалу для своего самодельного анемометра. Только с помощью правильно откалиброванного прибора можно получить достоверные данные о ветровой обстановке в необходимой зоне.

Источник

Бестселлер: testo 410-2

Анемометр с крыльчаткой

Анемометры в сочетании со смартфонами

Многофункциональные измерительные приборы

Настраиваем самодельный анемометр

Для настройки показаний анемометра в идеале применить настоящий анемометр. Я за свою жизнь держал в руках это чудо всего раз пять. Поэтому применил стандартный способ, прикрепил анемометр к ручке из дерева. И при езде на автомобиле в безветренную погоду настроил велокомпьютер по совпадению показаний со спидометром.

В моем велокомпьютере настройка заключалась в подборе значения радиуса колеса в миллиметрах. Запоминаем величину найденного радиуса (лучше записываем), а то при смене батарейки компьютер забудет настройки.Цель получить суперточные показания не ставилась. Всё — настроено.

Бестселлер: testo 410-2

Анемометр с крыльчаткой

Анемометры в сочетании со смартфонами

Многофункциональные измерительные приборы

Схема подключения анемометра

Диоды Шоттки выбраны из-за того, что скорость вращения крыльчатки, в обычных условиях (если нет урагана) не очень велика. При скорости ветра около 6 м/с, на выходе прибора появляется напряжение около 0,5 В. В таких условиях рационально минимизировать потери на всех элементах схемы. По этой же причине в качестве соединительных проводов используются проводники избыточно большого сечения.

К выводам выпрямителя можно подключить любой вольтметр постоянного тока на 2 В. С его ролью отлично справляется мультиметр. Хотя использование отдельного стрелочного прибора позволяет непосредственно градуировать шкалу в скорости ветра.

Так как устройство планировалось эксплуатировать на улице диодный мост был залит в эпоксидную смолу. Как оказалось конденсатор был взят избыточно емкий так, что быстрые перепады напряжения и соответственно, порывы ветра прибор зафиксировать не может.

Таблица для определения скорости ветра по внешним признакам

характер ветраскорость ветра м/секпризнаки
очень легкий0-1движение воздуха незаметно
1-3движение воздуха едва заметно, шелестят листья
легкий4-5ветки слегка качаются, дым плывет в воздухе сохраняя очертания клубов
умеренный6-7ветки гнуться, ветер «слизывает» дым с трубы и перемешивает его в однородную массу, поднимается пыль
свежий8-9верхушки деревьев шумят и качаются
очень свежий10-11тонкие стволы деревьев гнутся, завывание ветра в трубах
сильный12-14листь срываются, на стоячей воде образуются волны с опрокидыванием гребней
резкий15-16тонкие ветки ломаются, затруднено движение против ветра
буря17-19толстые ветви ломаются, срывает кровельные покрытия
сильная буря20-23тонкие веревья ломаются

Собираясь осенью и или зимой на работу не всегда в темное время суток понятно, какая погода за окном, в частности какой ветер. Я думаю при сильном ветре полезно одеть детей потеплее, да и самому не плошать. При ненастье также любопытно знать скорость бушующего за окном ветра.

Вспоминая поговорку «готовь сани летом», решил летом построить своими руками анемометр. Опыт создания самодельных анемометров (измерителей скорости ветра) был, но конструкции создавались давно на старой электронной базе в 80 х годах прошлого века и время их не пощадило.

Утилизируя очередной видеомагнитофон, решил оставить от него след на Земле. Во всех видеомагнитофонах есть блок вращающихся головок. Это прецизионный узел высокой точности и надежности — сердце каждого видеомагнитофона. Узел сделан из нержавеющего металла с осью вращающейся головки на герметичных подшипниках.

Чашечный анемометр своими руками: схема устройства

Для изготовления самодельного анемометра в домашних условиях понадобится старая модель видеомагнитофона. Его блок вращения головок станет основой будущей конструкции. Для этого с узла снимают лишние детали, чтобы получить в остатке только каркас с осью, блок подшипников и шайбу для крепления двигателя.

  • Во вращающейся части высверливаются отверстия диаметром 4мм, на которых будут устанавливаться чашки лопастей. Три отверстия на одной из них уже есть – это места креплений внутренних узлов в разобранном магнитофоне. По ним стоит ориентироваться, выбирая места для оставшихся девяти отверстий.
  • В отверстия вставляют болты типа М4 длиной 10мм. Надежно закрепить чашки и исключить их вращение на оси лопасти помогут резиновые шайбы, вырезанные из старой велосипедной камеры.
  • Теперь нужно взять 4 пластмассовые кружки для воды одного размера и просверлить в дне отверстие 4мм. Ручки чашек срезают «под корень».
  • Чашки крепят на оси, разворачивая их в одном направлении и фиксируя с помощью болтов и резиновых шайб. Полностью собранная конструкция должна легко вращаться под воздействием даже легкого ветра.

Теперь можно собрать конструкцию полностью. Для этого:

  • На вращающуюся часть узла устанавливается и крепится магнит, еще один элемент старого велосипеда. Затем проводится балансировка узла вращения, чтобы исключить одновременное вращение шеста вместе с движущимися лопастями.
  • В качестве счетного датчика можно использовать снятый с велосипеда мини-компьютер. Его приклеивают к неподвижной части узла, закрыв магнит листом картона. Обязательно стоит проверить датчик тестером на быстроту срабатывания.
  • Остается подключить кабель и закрепить на неподвижной части устройства кусок металлического уголка для последующего монтажа конструкции.

Подключаем кабель

Кабель датчика удлинен на 7 метров с применением кабеля для построения компьютерной сети. Для удобства подключения на кабель и в разрывы сигнального кабеля велокомпьютера установлены разъемы от вентиляторов и блока питания компьютера. Сам велокомпьютер выполнен в настольном варианте, при помощи медной проволоки прикручен к магнитной системе двигателя видеоголовки. Получилась устойчивая конструкция.


Основание


Разъём


Настольный вариант

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]